
Lanczos Algorithm and Conjugate Gradient

Hongda Li

A thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Science

University of Washington

2022

Committee:

Anne Greenabum

Tom Trogdon

Program Authorized to Offer Degree:

Applied Mathematics

©Copyright 2022

Hongda Li

University of Washington

Abstract

Lanczos Algorithm and Conjugate Gradient

Hongda Li

Chair of the Supervisory Committee:

Professor Anne Greenbaum:

Applied Mathematics

We review results from the literature on the conjugate gradient algorithm for solv-

ing symmetric positive definite linear systems and the related Lanczos algorithm. We

derive the conjugate gradient algorithm from the more general conjugate direction

method, using projectors. We establish error bounds using exact arithmetic theory

and also discuss what can happen when floating-point arithmetic is used. We present

numerical experiments to illustrate this behavior.

Contents

1 Notations 5

2 Introduction 6

3 Foundations 7

3.1 The Basics . 7

3.1.1 Krylov Subspace . 7

3.1.2 Projectors . 8

3.2 Subspace Projection Methods . 9

3.3 Deriving Conjugate Gradient from Conjugate Directions 11

3.3.1 CG Objective and Framework 11

3.3.2 Using the Projector . 12

3.3.3 Method of Conjugate Directions 13

3.3.4 Properties of CDM . 14

3.3.5 Conjugate Gradient . 15

3.3.6 CG and Krylov Subspace . 19

3.4 Arnoldi Iterations and Lanczos . 21

3.4.1 The Arnoldi Iterations . 21

3.4.2 Arnoldi Produces Orthogonal Basis for Krylov Subspace 22

3.4.3 The Lanczos Iterations . 23

4 Analysis of Conjugate Gradient and Lanczos Iterations 25

4.1 Conjugate Gradient and Matrix Polynomial 26

4.1.1 Termination Conditions of CG 28

4.2 Convergence Rate of CG under Exact Arithmetic 28

4.2.1 Uniformly Distributed Eigenvalues 28

4.2.2 One Outlier Eigenvalue . 31

4.3 From Conjugate Gradient to Lanczos 34

4.4 From Lanczos to Conjugate Gradient 36

1

4.4.1 Matching the Residual and Conjugate Vectors 36

4.4.2 Matching the ak, bk in CG . 39

5 Effects of Floating-Point Arithmetic 42

5.1 Partial Orthogonalization and Full Orthogonalization 42

5.2 Relative Errors of CG Under Floating-Point Arithmetic 43

5.2.1 Experiments . 43

5.3 Paige’s Convergence rate of CG under Floating Points 46

5.3.1 Bounding the Relative Residuals 46

5.3.2 Paige’s Theorem and Floating-point Convergence of CG 48

5.4 Ghost Eigenvalues and Losing Orthogonality 51

5.4.1 Ghost Eigenvalues Experiments 51

5.4.2 Lanczos Vectors Losing Orthogonality on converged Ritz vectors 54

5.4.3 Greenbaum’s Tiny Interval Experiments 58

5.5 Another Paige’s Theorem . 60

Appendices 64

A Useful Lemmas 64

A.1 Relative Energy Norm and Relative 2-Norm Conversions 64

B Theorems, Propositions, Proofs 65

B.1 Krylov Subspace Grade Invariant Theorem 65

B.2 Cauchy Interlace Theorem for Tridiagonal Symmetric Matrices 66

B.3 Orthogonal Polynomials and Lanczos 66

B.4 Recursion of the Symmetric Tridiagonal Matrix Determinant 67

B.5 Recurrence of the Characteristic Polynomial of a Symmetric Tridiagonal

Matrix . 68

B.6 Tridiagonal Characteristic Polynomials is Scaled Lanczos Orthgonal

Polynomials . 69

B.7 Irreducible Symmetric Tridiagonal Matrix 70

B.8 From CG to Lanczos: The Proof . 71

2

B.8.1 The Base Case . 71

B.8.2 The Inductive Case . 72

B.8.3 Fixing the Sign . 74

B.9 Derive CG using Lanczos: Proof . 74

C Algorithms 77

3

Acknowledgement

Firstly, I need to express my upmost gratitude to Professor Greenbaum for taking

the time to review the several drafts of this thesis and for her help with my research

throughout the year. Next, I am very grateful to the NARC reading group and par-

ticipants and my Committee members, Professor Tom Trogdon for attending a trial

run of the presentation for the content of this thesis. Finally, a big thanks to my old

undergraduate classmate who is also a friend of mine who helped with fixing the typos

on the later drafts.

4

1 Notations

1. ran(A) := {Ax : ∀x ∈ R
n}, A ∈ R

m×n, the range of a matrix.

2. (A)i,j: The element in ith row and jth column of the matrix A.

3. (A)i:i′,j:j′ : The submatrix whose top left corner is the (i, j) element in matrix

A, and whose’ right bottom corner is the (i′, j′) element in the matrix A. The

notation is similar to MATLAB’s rules for indexing.

4. ∀ 0 ≤ j ≤ k: under certain context it indicates the range for an index: j =

0, 1, · · · , k − 1, k

5. Boldface 0 denotes the zero vector or matrix, depending on the context it can be

either a zero row/column vector, or a zero matrix.

6. Theˆdecorator is reserved for denoting the unit vector of some non zero vector.

For example x̂ := x/∥x∥, x ̸= 0.

7. pk(A|w) denotes the matrix polynomial
∑k

j=0wjA
j.

8. (ξi)
k
i=1 are used to denote the ith standard basis vector. Its size depends on the

context, sometimes it is denoted without ambguity for example: ξ
(k)
i would denote

the ith standard basis vector for R
k.

5

2 Introduction

The conjugate gradient method is an iterative method used for solving symmetric

positive definite linear systems. It dates back to the period when computers were

programmed using punched cards. It didn’t receive much attention at the start but

was revised and reappeared as a method for solving large sparse linear systems decades

later, becoming the best option for positive definite linear systems that are sparse and

large and, by extension, for optimizing strongly convex functions as well. In this thesis,

we discuss the conjugate gradient method without pre-conditioning by deriving it and

analyzing it along with the Lanczos algorithm, a closely related algorithm for solving

symmetric eigenproblems. Finally, we use their connections to analyze their behaviors

under floating-point arithmetic. The thesis will require some background in numerical

linear algebra for the best understanding.

In the first section, we introduce projectors and subspace projection methods.

We then specialize to Krylov subspaces and demonstrate that the conjugate gradient

method can be thought of as producing an oblique projection onto a Krylov subspace.

We also derive the Lanczos algorithm as the symmetric version of the more general

Arnoldi algorithm. In the second section, we establish the well-known relationship

between these two algorithms and we derive bounds on the convergence rate of the

conjugate gradient algorithm. In the third section, we use numerical experiments to

better understand the algorithm behaviors under floating-point arithmetic, and we

discuss possible ways to mitigate the effects of floating-point arithmetic, as well as

what to expect if these effects are not mitigated.

6

3 Foundations

In this section, we go over the foundations of the conjugate gradient and the Lanczos

algorithms. We introduce the important ideas at the beginning, and then we proceed

to derive the conjugate gradient algorithm from the method of conjugate directions.

We then derive the Lanczos algorithm as a symmetric case of the Arnoldi iteration.

3.1 The Basics

In this subsection, we go over some basic concepts and mathematical entities that are

important to Subspace Projection methods in general.

3.1.1 Krylov Subspace

Definition 1 (Krylov Subspace).

Kk(A|b) = span(b, Ab, A2b, · · ·Ak−1b)

Observe that every element in the subspace is the product of a matrix polynomial with

the vector b; we write it as pk−1(A|w)b, where pk−1 is a (k − 1)st degree polynomial

and w is a vector denoting the coefficients.

Definition 2 (The Grade of Krylov Subspace). The grade of the Krylov subspace

for matrix A and vector b is k − 1 where k is the smallest k such that the vectors in

Kk(A|b) are linearly dependent. This will be denoted as grade(A|b). Alternatively,

it is also the degree of the minimal polynomial p(A) such that p(A)b = 0. Using

the invariant property of the Krylov Subspace we could claim that: grade(A|b) =

maxk dim(Kk(A|b)).

The terminology “grade of a Krylov subspace” is used in Y. Saad’s book[13] on page

158. Once the grade is reached, the Krylov subspace becomes an invariant subspace

for the matrix A. For a proof, see Krylov Subspace Grade Invariant Theorem (B.1) in

the appendix.

7

Proposition 3.1 (When the Grade is Reached). Assuming that matrix A is diago-

nalizable whose eigendecomposition is A = V ΛV −1, then grade(A|u) is the number of

unique λi such that (V −1u)i is non-zero.

Proof. Let Kk+1(A|u) be linearly dependent, then there is a nonzero vector w such

that:

0 =
k∑

j=0

wjA
ju (3.1.1)

0 = V

k∑

j=0

wjΛ
jV −1u (3.1.2)

∀i 0 =

(
k∑

j=0

wjλ
j
i

)

(V −1u)i (3.1.3)

It follows that
∑k

j=0wjλ
j
i = 0 whenever (V −1u)i ̸= 0. If there are more than k indices

i, corresponding to distinct eigenvalues λi, for which (V −1u)i ̸= 0, then the only vector

w for which the above equations will be satisfied is w = 0. This is because the k + 1

by k + 1 matrix whose (i, j + 1) entry is λji is a Vandermonde matrix and hence is

nonsingular. However, if there are k such indices i, then there will be a nonzero vector

w that satisfies the above k equations in the k + 1 unknowns, w0, . . . , wk. If there are

fewer than k nonzero entries of (V −1u)i corresponding to distinct eigenvalues λi, then,

by the same arguments, the grade will be less than k.

3.1.2 Projectors

Definition 3. A matrix P is a projector when P 2 = P , we call this property idempo-

tent.

There are two types of projectors, oblique and orthogonal projectors. A projector

is an orthogonal projector when it’s Hermitian and oblique when it’s not Hermitian.

Proposition 3.2 (Projector Complementary). The projector I −P projects onto the

8

null space of P and vice versa.

ran(P) = null(I − P) (3.1.4)

ran(I − P) = null(P) (3.1.5)

The proof is immediate from the definition. For more coverage of facts, refer to

Trefethen’s Book on Numerical Linear Algebra page 41.[17].

3.2 Subspace Projection Methods

Let K,L be two subspaces of Rn. We will choose approximate solutions to our linear

system Ax = b from K, and we will orthogonalize the residual b−Ax̃ against L. This

is a description of this framework:

choose x̃ ∈ x0 +K s.t: b− Ax̃ ⊥ L. (3.2.1)

Let the columns of V ∈ R
n×m be a basis for K and let the columns of W ∈ R

n×m be

a basis for L. Then

x̃ = x0 + V y (3.2.2)

choose x s.t: b− Ax̃ ⊥ ran(W) (3.2.3)

=⇒ W T (b− Ax0 − AV y) = 0 (3.2.4)

W T r0 −W TAV y = 0 (3.2.5)

W TAV y = W T r0 (3.2.6)

Thus we can determine the approximate solution x̃ by solving the linear system

W TAV y = W T r0 for y (assuming that the matrix W TAV is nonsingular) and then

setting x̃ = x0 + V y. The new residual is r̃ = b − Ax̃ = b − Ax0 − AV y =

r0 − AV (W TAV)−1W T r0, and the matrix AV (W TAV)−1W T is a projection since

[AV (W TAV)−1W T][AV (W TAV)−1W T] = AV (W TAV)−1W T (3.2.7)

9

Alternatively, for some symmetric positive definite matrix B, one might choose x̃ =

x0 + V y to minimize the B-norm of the residual ∥r0 − AV y∥B = ⟨r0 − AV y,B(r0 −

AV y)⟩1/2. Setting the gradient of this function to zero leads to the normal equations:

V TATBAV y = V TATBr0 (3.2.8)

If A itself is symmetric and positive definite, then we can take B = A−1 and mini-

mize the A−1-norm of the residual or, equivalently, the A-norm of the error ⟨A−1b −

x̃, A(A−1b− x̃)⟩. The formula for y then becomes

V TAV y = V T r0 (3.2.9)

This is what the conjugate gradient algorithm does, taking the columns of V to be

an orthonormal basis of the Krylov space K = K(A|b). Note that this also involves a

projection but the two spaces K and L and their bases V and W described above, are

the same. Now

r̃ = b− Ax̃ (3.2.10)

= b− Ax0 − AV y (3.2.11)

= r0 − AV (V TAV)−1V T r0 (3.2.12)

and the matrix AV (V TAV)−1V T satisfies

[AV (V TAV)−1V T][AV (V TAV)−1V T] = AV (V TAV)−1V T (3.2.13)

The A-norm of the error often represents energy in a mechanical system and so it is

often referred to as the energy norm.

10

3.3 Deriving Conjugate Gradient from Conjugate Directions

At the time this is being written, it’s been 70 years since the conjugate gradient

algorithm was proposed by Hestenes and Stiefel back in 1952[8]. Upon their first

discussion of the algorithm, numerous perspectives were explored. Three of the most

important ideas are using Conjugate Directions, minimizing the energy norm of the

error of the linear system and coming up with an update of the conjugate vectors

using the residual vector at the current iteration. Here, we use the exact same idea,

but we diverge from Hestenes and Stiefel’s approach in favor of using the oblique

projector and the subspace orthogonality conditions to derive it. At the end, we

point out the relations between conjugate gradient and Krylov Subspace. Usually

under classroom settings or textbooks, the relations of conjugate gradient, Lanczos

Iterations and Krylov Subspaces are discussed together to explain some of the more

important properties of the algorithm so that we can move on and talk about other

things. However, in this section we derive it in a way similar to the approach used in

course notes by Shewchuk [15].

3.3.1 CG Objective and Framework

We introduce the algorithm as an attempt to minimize the energy norm of the error

for a system of linear equations Ax = b, and we make the assumptions:

1) The matrix A is symmetric positive definite.

2) There is a matrix Pk = [p0 p1 · · · pk−1] whose columns form a basis for the space

over which we are minimizing.

Let’s consider the following objective of minimizing the energy norm of the error over

a subspace.

min
w∈Rk

∥A−1b− (x0 + Pkw)∥2A ⇐⇒ P T
k r0 = P T

k APkw (3.3.1)

Refer back to equation (3.2.9) for how to obtain the above condition. Using the matrix

from equation (3.2.2), where W = V = Pk, we reformulate the norm minimization

11

conditions as:

choose: x ∈ x0 + ran(Pk) s.t: b− Ax ⊥ ran(Pk) (3.3.2)

Take note that the link between a norm minimization and an equivalent subspace or-

thogonality condition isn’t guaranteed to happen for other subspace projection meth-

ods. For example, the FOM and Bi-Lanczos Methods are orthogonalization methods

that don’t directly link to a norm minimization objective [14].

To solve for w, we wish to make P T
k APk to be a diagonal matrix, which is an easy-

to-solve matrix, which implies that Pk is a matrix whose columns are A-Orthogonal

vectors, also referred as conjugate vectors.

P T
k APk = Dk where: (Dk)i,i = ⟨pi−1, Api−1⟩ (3.3.3)

P T
k r0 = P T

k APkw = Dkw (3.3.4)

w = D−1
k P T

k r0 (3.3.5)

Now we have the following expressions for xk and rk:

xk = x0 + PkD
−1
k P T

k r0

rk = r0 − APkD
−1
k P T

k r0

(3.3.6)

Let this algorithm be the prototype.

3.3.2 Using the Projector

Observe that APkD
−1
k Pk is a projector, and so is PkD

−1
k P T

k A. We can check by:

APkD
−1
k P T

k (APkD
−1
k P T

k) = APkD
−1
k (P T

k APk)
︸ ︷︷ ︸

Dk

D−1
k P T

k = APkD
−1
k P T

k (3.3.7)

PkD
−1
k P T

k A(Pk
︸ ︷︷ ︸

Dk

D−1
k P T

k A) = PkD
−1
k DkD

−1
k P T

k A = PkD
−1
k P T

k A (3.3.8)

12

They are not Hermitian, therefore they are oblique projectors. For convenience, we

denote P k = PkD
−1
k P T

k ; So we can simply denotes them by AP k, P kA. Observe that:

ran(I − AP k) ⊥ ran(Pk) (3.3.9)

ran(I − P kA) ⊥ ran(APk) (3.3.10)

because:

P T
k (I − AP k) = P T

k − P T
k AP k (3.3.11)

= P T
k −DkD

−1
k P T

k = 0 (3.3.12)

(APk)
T (I − P kA) = P T

k A− P T
k AP kA (3.3.13)

= P T
k A− P T

k APkD
−1
k P T

k A (3.3.14)

= P T
k A− P T

k A = 0 (3.3.15)

Proposition 3.3 (Generating A-Orthogonal Vectors). Given any set of linearly inde-

pendent vectors, for example {ui}n−1
i=0 , one can generate a set of A-Orthogonal vectors

from it. More specifically:

pk = (I − P kA)uk =⇒ pk ⊥ ran(APk) (3.3.16)

Proof. It’s direct from the properties of the projectors.

3.3.3 Method of Conjugate Directions

So far, we have this particular scheme of solving the optimization problem, coupled

with the way to compute the solution xk at each step, and the residual rk at each

step. However, it would be great if we could update xk, rk, and pk using results from

previous iterations.

13

Definition 4 (Conjugate Direction Method).

P k = PkD
−1
k P T

k

xk = x0 + P kr0

rk = (I − AP k)r0

P T
k APk = Dk

pk = (I − P kA)uk {ui}n−1
i=0 linearly independent vectors

(3.3.17)

With the assistance of a set of basis vectors that span the whole space, this algo-

rithm can achieve the objective.

Remark 3.3.1. This conjugate direction method (CDM) method is nothing new, in

the original paper from Hestenes and Stiefel back in 1952[8], they commented on the

method of Conjugate Direction, for each choice of basis {ui}n−1
i=0 there is a unique

algorithm. If one were to choose the basis to be the set of standard basis vectors, then

the resulting algorithm would be the equivalent of Gaussian Elimination.

Remark 3.3.2 (Geometric Intuition of CDM). What is happening geometrically is

that the A-Orthogonal vectors are orthogonal when described under the eigenspace.

Intuitively, one should think of a high-dimensional sphere that sits along some orthog-

onal basis, and the transformation of A is stretching and rotating sphere, along with

the orthogonal axis, resulting in a new ellipsoid in a different orientation; when the

transformation is applied, the orthogonal coordinate inside the sphere got stretched

along with it, and now these axes had become A-orthogonal vectors. Tracing along

the direction of these vectors will ensure minimum redundancy of search directions.

3.3.4 Properties of CDM

Here we set up several useful lemma and propositions that can derive the short recur-

rences of A-Orthogonal vectors

14

Proposition 3.4 (CDM Property 1).

pTk+jrk = pTk+jr0 ∀ 0 ≤ j ≤ n− k (3.3.18)

Proof.

pTk+jrk = pTk+j(I − AP k)r0 (3.3.19)

= (pTk+j − pTk+jAP k)r0 (3.3.20)

= pTk+jr0 (3.3.21)

Proposition 3.5 (CDM Recurrence).

rk − rk−1 = r0 − AP kr0 − (r0 − AP k−1r0) (3.3.22)

= −AP kr0 + AP k−1r0 (3.3.23)

= −Apk−1
⟨pk−1, r0⟩
⟨pk−1, Apk−1⟩

(3.3.24)

=⇒ xk − xk−1 = pk−1
⟨pk−1, r0⟩
⟨pk−1, Apk−1⟩

(3.3.25)

def: ak−1 :=
⟨pk−1, r0⟩
⟨pk−1, Apk−1⟩

=
⟨pk−1, rk−1⟩
⟨pk−1, Apk−1⟩

(3.3.26)

On (3.3.26) we used CDM Property 1. The value of ak−1 is defined above„ we have

two equivalent representations for ak−1. This recurrence remains true for the future

regardless of the set {u}n−1
i=0 that generates these conjugate vectors.

3.3.5 Conjugate Gradient

Now, consider the case where the set of basis vectors: {ui}n−1
i=0 are the residual vectors

generated from the CDM itself. This generates the CG method.

Lemma 3.3.1.

⟨pk+j, Apk⟩ = ⟨rk, Apk+j⟩ = ⟨pk+j, Ark⟩ ∀ 0 ≤ j ≤ n− k (3.3.27)

15

Proof.

pTk+jApk = pTk+jArk − pTk+jAP kArk ∀ 0 ≤ j ≤ n− k (3.3.28)

= pTk+jArk (3.3.29)

⟨pk+j, Apk⟩ = ⟨rk, Apk+j⟩ = ⟨pk+j, Ark⟩ (3.3.30)

On the first line we invoked the CDM algorithm’s definition back in (3.3.27), replacing

uk with rk, hence pk = (I − P kA)rk, which is then substituted into line (3.3.28).

Lemma 3.3.2.

⟨rk, pk⟩ = ⟨rk, rk⟩ (3.3.31)

Proof.

⟨rk, pk⟩ = ⟨rk, rk⟩ − ⟨rk, P kArk⟩ = ⟨rk, rk⟩ (3.3.32)

First equality used pk = (I−P kA)rk, second equality used the fact that rk is orthogonal

to Pk.

Proposition 3.6 (CG Generates Orthogonal Residuals).

⟨rk, rj⟩ = 0 ∀ 0 ≤ j ≤ k − 1 (3.3.33)

Let this above claim be inductively true then consider:

Proof.

rk+1 = rk − akApk (3.3.34)

=⇒ ⟨rk+1, rk⟩ = ⟨rk, rk⟩ − ak⟨rk, Apk⟩ (3.3.35)

= ⟨rk, rk⟩ −
⟨rk, rk⟩
⟨pk, Apk⟩

⟨rk, Apk⟩ (3.3.36)

= 0 (3.3.37)

16

The first line is from the recurrence of CDM residuals, and then next we make use of

ak from (CDM Recurrence (3.5)) together with Lemma 3.3.1. Next we consider:

pj = (I − P jA)rj ∀ 0 ≤ j ≤ k − 1 (3.3.38)

=⇒ rj = pj + P jArj (3.3.39)

rk = (I − AP k)r0 (3.3.40)

rk ⊥ ran(Pk) =⇒ ⟨rk, rj⟩ = ⟨rk, pj + P jArj⟩ = 0 (3.3.41)

The second line (3.3.39) is a result of the first line (3.3.38) rearranged. Here we again

make use of the projector I − AP k. The last line (3.3.53) is using the second line

3.3.39. The base case of the argument is simple, because p0 = r0, and by the property

of the projector, ⟨r1, r0⟩ = 0. The theorem is now proven.

Proposition 3.7 (CG Recurrences).

pk = rk + bk−1pk−1 bk−1 =
∥rk∥22
∥rk−1∥22

(3.3.42)

Proof. The proof is direct, starting with the definition of CDM, which is given as:

pk = (I − P kA)rk (3.3.43)

rk − P kArk = rk − PkD
−1
k P T

k Ark (3.3.44)

= rk − PkD
−1
k (APk)

T rk (3.3.45)

Observe:

(APk)
T rk =

⟨p0, Ark⟩

⟨p1, Ark⟩
...

⟨pk−1, Ark⟩

(3.3.46)

17

Next, we can make use of lemma 3.3.1 to get rid of Ark:

⟨pj, Ark⟩ ∀ 0 ≤ j ≤ k − 2 (3.3.47)

⟨pj, Ark⟩ = ⟨rk, Apj⟩ (3.3.48)

= ⟨rk, a−1
j (rj − rj+1)⟩ (3.3.49)

= a−1
j ⟨rk, (rj − rj+1)⟩ = 0 (3.3.50)

The second line is also using the property that the matrix A is symmetric, the third

line is using the recurrence of the residual established for CDM (CDM Recurrences

(Proposition 3.5)), and the last line is true for all 0 ≤ j ≤ k − 2 by the orthogonal-

ity of the residual proved in CG Generates Orthogonal Residuals (Proposition 3.6).

Therefore we have:

(APk)
T rk =

⟨p0, Ark⟩

⟨p1, Ark⟩
...

⟨pk−1, Ark⟩

= a−1
k−1⟨rk, (rk−1 − rk)⟩ξk (3.3.51)

Take note that the vector ξk is the k th standard basis vector in R
k, keep in mind that

rk ⊥ rk−1 as well. Using these facts we can simplify the expression for pk into:

pk = rk − PkD
−1
k (APk)

T rk (3.3.52)

= rk − PkD
−1
k a−1

k−1(⟨rk, (rk−1 − rk)⟩)ξk (3.3.53)

= rk −
a−1
k−1⟨−rk, rk⟩
⟨pk−1, Apk−1⟩

pk (3.3.54)

= rk +
a−1
k−1⟨rk, rk⟩
⟨pk−1, Apk−1⟩

pk (3.3.55)

= rk +

(⟨rk−1, rk−1⟩
⟨pk−1, Apk−1⟩

)−1 ⟨rk, rk⟩
⟨pk−1, Apk−1⟩

pk (3.3.56)

= rk +
⟨rk, rk⟩
⟨rk−1, rk−1⟩

pk (3.3.57)

We make use of the definition for ak−1 for the CDM algorithm (proposition 3.5 together

18

with lemma 3.3.2). At this point, we have proven the short CG recurrences for pk.

Up until this point we have developed the standard form of the conjugate gradi-

ent algorithm proposed by Hestenes & Stiefel[8]. We started with the minimization

objective and the properties of Pk, then we defined a recurrence for the residual (and

simultaneously the solution xk), and the A-Orthogonal vectors using a set of basis vec-

tors to assist in the generation process. Next, we chose the basis vectors to be the set

of residual vectors generated from the algorithm itself; after some proofs, we uncovered

the exact same parameters found in most of the definitions of the CG algorithm:

Definition 5 (CG).

p(0) = b− Ax(0) (3.3.58)

For i = 0, 1, · · · (3.3.59)

ai =
∥r(i)∥2
⟨p(i), Ap(i)⟩

x(i+1) = x(i) + aip
(i)

r(i+1) = r(i) − aiAp(i)

bi =
∥r(i+1)∥22
∥r(i)∥22

p(i+1) = r(i+1) + bip
(i)

(3.3.60)

All the iteration numbers listed as superscripts inside parentheses. Which is equiv-

alent to what we have proven for the CG.

3.3.6 CG and Krylov Subspace

The conjugate Gradient Algorithm is actually a CDM. It’s a special case of the CDM

method where the first direction of descend is the gradient at the initial guess (the

residual). Next, we want to show how CG is related to the Krylov Subspace, which

only happens with CG and not the CDM.

19

Proposition 3.8.

pk ∈ Kk+1(A|r0) (3.3.61)

rk ∈ Kk+1(A|r0) (3.3.62)

Proof. The base case is trivial and it’s directly true from the definition of CG: r0 ∈

K1(A|r0), p0 = r0 ∈ K1(A|r0). Next, we inductively assume that rk ∈ Kk+1(A|r0), pk ∈

Kk+1(A|r0), then we consider:

rk+1 = rk − akApk (3.3.63)

∈ rk + AKk+1(A|r0) (3.3.64)

∈ rk +Kk+2(A|r0) (3.3.65)

rk ∈ Kk+1(A|r0) ⊆ Kk+2(A|r0) (3.3.66)

=⇒ rk+1 ∈ Kk+2(A|r0) (3.3.67)

At the same time the update of pk would assert the property that:

pk+1 = rk+1 + bkpk (3.3.68)

∈ rk+1 +Kk+1(A|r0) (3.3.69)

∈ Kk+2(A|r0) (3.3.70)

This is true because rk+1 is already a member of the expanded subspace Kk+2(A|r0).

And from this formulation of the algorithm, we can update the Petrov Galerkin’s

Conditions to be:

Theorem 1 (CG and Krylov Subspace).

choose: xk ∈ x0 +Kk(A|r0) s.t: rk ⊥ Kk(A|r0) (3.3.71)

Take note that, ran(Pk) = Kk(A|r0) because the index starts with zero for the

Conjugate Vectors.

20

3.4 Arnoldi Iterations and Lanczos

In this section, we introduce another important algorithm: The Lanczos Algorithm.

Instead of deriving the tridiagonal matrix produced by the Lanczos algorithm in the

usual way, we will derive it from the Arnoldi algorithm, which, like the Lanczos algo-

rithm produces an orthonormal basis for a Krylov space, but now with a nonsymmetric

matrix.

3.4.1 The Arnoldi Iterations

We first define the Arnoldi Algorithm, and then we proceed to derive it using the idea

of an orthogonal projector. Next, we discuss a special case of the Arnoldi Iteration:

the Lanczos Algorithm, which is just Arnoldi applied to a symmetric matrix. And

such an algorithm will inherit the properties of the Arnoldi Iterations.

We initialize the orthogonal projector with the vector q1, which is q1q
H
1 . Next,

we apply the linear operator A on the current range of the projector: Aq1. Then we

orthogonalize it against q1: (I − q1q
H
1)Aq1. Let h11q1 be the orthogonal projection

of Aq1 onto q1; i.e., h11 = qH1 Aq1. Then we normalize the new vector q2 = (I −

q1q
H
1)Aq1/∥(I − q1qH1)Aq1∥2, and set h21 = ∥(I − q1qH1)Aq1∥2. This completes the first

column of H, and we do this recursively.

Qj = [q1, . . . , qj] (3.4.1)

qj+1 =
(I −QjQ

H
j)Aqj

∥(I −QjQH
j)Aqj∥2

(3.4.2)

h1:j,j = QjQ
H
j Aqj (3.4.3)

hj+1,j = ∥(I −QjQ
H
j)Aqj∥2. (3.4.4)

Qk is going to be orthogonal because we are using orthogonal projectors. As a conse-

21

quence, we can express the recurrence in matrix form:

AQk = Qk+1H̃k (3.4.5)

QH
k AQk =: Hk, (3.4.6)

where H̃k is a k + 1 by k matrix and Hk is the k by k principal submatrix of H̃k.

Please observe that, if A is symmetric, then QH
k AQk is also symmetric, which makes

Hk symmetric, implying that Hk is a symmetric tridiagonal matrix. This is the matrix

produced by the Lanczos algorithm.

3.4.2 Arnoldi Produces Orthogonal Basis for Krylov Subspace

One important observation the reader should make is that, during each iteration, the

columns of Qk span the Krylov space Kk(A|q1).

Proposition 3.9.

ran(Qk) = Kk(A|q1) (3.4.7)

Proof. Clearly K1(A|q1) is just q1, and assuming that ran(Qk−1) = Kk−1(A|q1) and

that the Arnoldi iteration does not terminate at step k, the new vector Aqk−1 is in

Kk(A|q1) and is not in Kk−1(A|q1). Thus, the vector qk obtained after orthogonalizing

Aqk−1 against Kk−1(A|q1) is nonzero and so the columns of Qk form an orthonormal

basis for Kk(A|q1).

Remark 3.4.1 (Arnoldi Produces Minimal Monic Polynomial). The characteristic

polynomial of Hk, minimizes ∥p(A|w)q1∥2 among all monic polynomials with degree k.

For more information, Trefethen has a coverage on the topic in his works [17] on page

259. The minimization property in Arnoldi translates to Lanczos Iterations as well.

22

3.4.3 The Lanczos Iterations

Definition 6 (Lanczos Iterations).

Given arbitrary: q1 s.t: ∥q1∥ = 1 (3.4.8)

set: β0 = 0 (3.4.9)

For j = 1, 2, · · · (3.4.10)

q̃j+1 := Aqj − βj−1qj−1

αj := ⟨qj, q̃j+1⟩

q̃j+1 ← q̃j+1 − αjqj

βj = ∥q̃j+1∥

qj+1 := q̃j+1/βj

(3.4.11)

Here, let it be the case that Hk is a symmetric tridiagonal matrix with αi on the

diagonal, βi on the sub and super diagonal; the Lanczos is Arnoldi, but we make use

of the symmetric properties to orthogonalize Aqj against qj−1 using βj−1, and in this

case, each iteration only consists of one vector inner product.Other variants of the

Lanczos Iterations exist. See appendix item 7 for one such variant.

The algorithm generates the following two matrices: Qk, which is orthogonal and

has columns that span Kk(A|q1), and a symmetric tridiagonal matrix Tk:

Qk =
[

q1 q2 · · · qk

]

(3.4.12)

Tk =

α1 β1

β1
.

. βk−1

βk−1 αk

(3.4.13)

Similar to the recurrence from the Arnoldi algorithm, the Lanczos algorithm also create

a recurrence between Aqk and Qk and qk+1, but the recurrence is shorter so that it

23

simply makes use of the previous two vectors. In addition, the tridiagonal matrix that

is produced has no repeated eigenvalues, which is a useful fact and for a proof, see

appendix item B.5.

Theorem 2 (Lanczos Recurrences).

AQk = QkTk + βkqk+1ξ
T
k = Qk+1T̃k (3.4.14)

=⇒ Aqj = βj−1qj−1 + αjqj + βjqj+1 ∀ 2 ≤ j ≤ k (3.4.15)

=⇒ Aq1 = α1q1 + β1q2 (3.4.16)

Proposition 3.10 (Lanczos Termination Conditions). The Lanczos Iteration pro-

duces a symmetric tridiagonal matrix that has no zero element on its super and sub-

diagonal, and if βk is zero, then the algorithm must terminate, and k would equal to

grade(A|q1), the grade of the Krylov Subspace.

Proof. The βk in the Lanczos is equivalent to hk+1,k. if hk+1,1 = 0 for the Arnoldi’s

Iteration, then the Krylov Subspace Kk(A|q1) became an invariant subspace under A,

and in that sense, the algorithm has to terminate because qk+1 = 0.

Remark 3.4.2 (Minimal Polynomial from Lanczos Iterations). The characteristic

polynomial of Tk has a special minimization property. Here recall remark 3.4.1, we

make use of the minimization property of the characteristic polynomial of the Hes-

senberg matrix from the Arnoldi Iterations. Under Lanczos iterations the matrix Hk

becomes the tridiagonal Tk. Since matrix A is symmetric, we consider its eigendecom-

position in the form: A = V ΛV T , we let p̄k(x) denote the characteristic polynomial of

24

matrix Tk, then using the 2-norm minimization properties we have:

min
pk∈Pk:monic

∥pk(A)q1∥2 (3.4.17)

= ∥pk(A)q1∥2 (3.4.18)

= ∥V p̄k(Λ)V T q1∥2 (3.4.19)

= ∥p̄k(Λ)V T q1∥2 (3.4.20)

=

√
√
√
√

n∑

i=1

pk2(λi)2(V T q1)21 (3.4.21)

The last line is saying the characteristic polynomial for Tk from the Lanczos iterations

is minimizing a weighted squared sum at the eigenvalues of the matrix A. This pro-

vides us with the intuitions that as the Lanczos iterations proceed, the roots of the

characteristic polynomial of Tk will get closer to the eigenvalues of matrix A.

Another fact about the characteristic polynomial of Tk is that the Lanczos vector

qk represents an orthogonal polynomial in Kk(A|q1) under a discrete weighted measure

over the eigenvalues of A, 1 and such a polynomial is a rescaled version of the char-

acterstic polynomial of Tk−1. (see proposition B.2 in the appendix for a proof), which

means that the characteristic polynomial of Tk is orthogonal under a discrete weighted

measure at the eigenvalues of A.

4 Analysis of Conjugate Gradient and Lanczos Iter-

ations

In this section, we state the termination conditions for the Lanczos iterations and the

CG algorithm we developed using the property of Krylov Subspace.

1The discrete measure is defined via inner product ⟨f, g⟩V T q1 =
∑n

i=1
f(λi)g(λi)(V

T q1)
2

i .

25

4.1 Conjugate Gradient and Matrix Polynomial

One important result of the optimization objective listed theorem 1 is the connec-

tion with the matrix polynomial of A and the relative energy norm of error. More

specifically:

Proposition 4.1 (CG Relative Energy Error).

xk ∈ K(A|r0)w + x0 (4.1.1)

∥ek∥2A
∥e0∥2A

= min
w∈Rk

∥(1 + Apk−1(A|w))A1/2e0∥22 ≤ min
pk∈Pk:pk(0)=1

max
x∈[λmin,λmax]

|pk(x)| (4.1.2)

Here we use the notation ek = A−1b− xk to denote the error vector and Pk to denotes

polynomial with a maximum degree of k.

Proof.

∥ek∥2A = min
xk∈x0+Kk(A|r0)

∥x+ − xk∥2A (4.1.3)

xk ∈ x0 +Kk(A|r0) =⇒ ek = e0 + pk−1(A|w)r0 (4.1.4)

=⇒ = min
w∈Rk

∥e0 + pk−1(A|w)r0∥2A (4.1.5)

= min
w∈Rk

∥e0 + Apk−1(A|w)e0∥2A (4.1.6)

= min
w∈Rk

∥A1/2(I + Apk−1(A|w))e0∥22 (4.1.7)

≤ min
w∈Rk

∥I + Apk−1(A|w)∥22∥e0∥2A (4.1.8)

= min
w∈Rk

(

max
i=1,...,n

|1 + λipk−1(λi|w)|2
)

∥e0∥2A (4.1.9)

≤ min
w∈Rk

(

max
x∈[λmin,λmax]

|1 + λipk−1(λi|w)|2
)

∥e0∥2A

(4.1.10)

= min
pk∈Pk:pk(0)=1

max
x∈[λmin,λmax]

|pk(x)|2∥e∥2A (4.1.11)

=⇒ ∥ek∥A
∥e0∥A

≤ min
pk∈Pk:pk(0)=1

max
x∈[λmin,λmax]

|pk(x)| (4.1.12)

26

(4.1.3) is the Error Energy norm minimization objective of CG, we proceed with writing

up the affine subspace where xk is from: x0 + Kk(A|r0) at (4.1.4), putting Krylov

subspace in terms of a matrix polynomial multiplied by r0 and then use A−1b to

subtract both sides to get the expression for ek. From the (4.15) line to the (4.16), we

use the fact that r0 = Ae0, allowing us to extract out a factor A.

Next, from (4.1.6) to (5.1.7), we use the fact that every symmetric definite matrix

A has the factorization of A1/2A1/2 where A1/2 is also a symmetric definite matrix.

After that we moved the A1/2 to e0 to get ∥e0∥2A from (4.1.7) to (4.1.8), the matrix

polynomial part is left with the 2-norm. From (4.1.8) to (4.1.9) we use the eigen

decomposition of A: QΛQT = A where Q is an Unitary Matrix and diagonals of Λ are

the eigenvalues of A:

∥I + Apk−1(A|w)∥22 = ∥Q(I + Λpk−1(Λ|w))QT∥22 (4.1.13)

= ∥I + Λpk−1(Λ|w)∥22 (4.1.14)

= max
i=1,··· ,n

|1 + λipk−1(λi|w)|2 (4.1.15)

Where, the 2-norm of a diagonal matrix Λ is just its biggest diagonal element. And

then we relax the conditions for λi by reducing it to be some element in the interval

between the minimum and the maximum of the eigenvalues for the matrix A (from

(4.1.9) to (4.1.10)).

The above results will be useful for proving the convergence of CG.

Remark 4.1.1. The matrix A is SPD, therefore ∥Ax∥ ≤ ∥A∥∥x∥ is tight, so (4.1.10)

is tight in the sense that for any iteration k, we can choose an initial vector e0 such that

the equality is achieved. (4.1.12) can still be tight if we have the freedom to choose

the eigenvalues of the matrix A. However, the bound is rarely tight if the initial error

vector e0 and the matrix A is fixed.

27

4.1.1 Termination Conditions of CG

Proposition 4.2 (Termination of CG). For all initial guesses, the maximum iterations

underwent by the CG algorithm is the number of unique eigenvalues for the matrix A.

This result is direct from (4.1.9), the CG algorithm terminates when a polynomial

that interpolates all the unique eigenvalues is found. This bound is true for all ini-

tial guesses, and sometimes for some given e0, the terminations can come with fewer

iterations.

4.2 Convergence Rate of CG under Exact Arithmetic

In this section discuss an analysis for convergence rate of the algorithm, following

a similar work in Greenbaum chapter 3[6]. The core idea is to use a Chebyshev

Polynomial to establish a bound on the interval containing the eigenvalues of A. We

will see that the distribution of the eigenvalues of A affects for the speed of convergence

of CG.

4.2.1 Uniformly Distributed Eigenvalues

Theorem 3 (CG Convergence Rate). The relative error squared measured over the

energy norm is bounded by:

∥ek∥A
∥ek∥A

≤ 2

(√
κ− 1√
κ+ 1

)k

(4.2.1)

Where k is the number of iterations of CG, κ is the condition number for A, and

ek = A−1b − xk, the upper bound is general and it’s able to bound the convergence

given λmin, λmax for A. The bound is loose when eigenvalues of matrix A is not quite

uniform on the interval, and the bound would be tighter given that k << n and the

eigenvalues of A are evenly spread out on the spectrum.

The analysis uses Chebyshev as an interpolating polynomial for the spectrum of A,

and we make use of the inf norm minimization property of the Chebyshev polynomial.

28

Here, we order all the eigenvalues of matrix A so that λ1, λn denotes the minimum and

the maximum eigenvalues for A.

Proof. We start by adapting the Chebyshev Polynomial to the convex hull of the

spectrum for matrix A.

Tk(x) = arg min
p∈Pk

max
x∈[−1,1]

|p(x)| (4.2.2)

pk(x) :=
Tk(φ(x))

Tk(φ(0))
where: φ(x) :=

2x− λ1 − λn
λn − λ1

(4.2.3)

=⇒ pk(x) = arg min
p∈Pk

s.t: p(0)=1

max
x∈[λ1,λn]

|p(x)| (4.2.4)

At this point, we have defined a new polynomial pk that minimizes the inf norm over

the convex hull of the eigenvalues. Note that here we use Tk for the type T Chebyshev

polynomial of degree k and it’s not the tridiagonal symmetric matrix from Lanczos

iterations. Next, we use the property that the range of the Chebyshev is bounded

within the interval [−1, 1] to obtain inequality:

∀x ∈ [λ1, λn] :

∣
∣
∣
∣

Tk(φ(x))

Tk(φ(0))

∣
∣
∣
∣
≤
∣
∣
∣
∣

1

Tk(φ(0))

∣
∣
∣
∣

(4.2.5)

Next, our objective is to find any upper bound for the quantities on the RHS in relation

to the condition number for matrix A and the degree of the Chebyshev polynomial.

Firstly observe that φ(0) < −1, φ(0) ̸∈ [λ1, λn], because all eigenvalues are larger than

zero, therefore it’s out of the range of the Chebyshev polynomial and we need to find

the actual value of it by considering alternative form of Chebyshev T for values outside

of the [−1, 1]:

Tk(x) = cosh(k arccosh(z)) ∀z ≥ 1 (4.2.6)

=⇒ Tk(cosh(ζ)) = cosh(kζ) z := cosh(ζ) (4.2.7)

We need to match the form of the expression Tk(φ(0)) with the expression of the form

Tk(cosh(ζ)) given the freedom of varying ζ. To do that we consider a substitution of

29

ζ = ln(y), so that we only need to match φ(0) with the form (y+ y−1)/2, which is just

a quadratic equation.

φ(0) = cosh(ζ) = cosh(ln(y)) ln(y) := ζ (4.2.8)

recall: cosh(x) = (exp(−x) + exp(x))/2 (4.2.9)

=⇒ cosh(ln(y)) = (y + y−1)/2 (4.2.10)

φ(0) = (y + y−1)/2 (4.2.11)

Recall the definition of φ(x) and then simplifies:

φ(0) =
−λn − λ1
λn − λ1

=
−λn/λ1 − 1

λn/λ1 − 1

= −λn/λ1 + 1

λn/λ1 − 1

=⇒ φ(0) = −κ+ 1

κ− 1

Our objective is now simple. We know what φ(0) is, we want it to form match with

cosh(ln(y)), and hence we simply solve for y:

−κ+ 1

κ− 1
=

1

2
(y + y−1) (4.2.12)

y =

√
κ± 1√
κ∓ 1

(4.2.13)

It’s a quadratic and we solved it. The above ±,∓ are correlated, meaning that they

are of opposite sign, which gives us two roots for the quadratic expression. Now, given

the hyperbolic form for φ(0), we can substitute and get the value of Tk(φ(0)) in terms

30

of y and then κ:

φ(0) =
1

2
(y + y−1) (4.2.14)

=⇒ Tk(φ(0)) = Tk(cosh(ln(y))) (4.2.15)

= cosh(k ln(y)) (4.2.16)

= (yk + y−k)/2 (4.2.17)

Then, substituting the value of y, and invert the quantity we have:

1

Tk(φ(0))
= 2(yk + y−k)−1 (4.2.18)

= 2

((√
κ± 1√
κ∓ 1

)k

+

(√
κ∓ 1√
κ± 1

)−k
)−1

(4.2.19)

= 2

(√
κ+ 1√
κ− 1

)k

︸ ︷︷ ︸
>1

+

(√
κ− 1√
κ+ 1

)−k

︸ ︷︷ ︸
<1

−1

(4.2.20)

≤ 2

(√
κ− 1√
κ+ 1

)k

(4.2.21)

Which completes the proof. Recall from the previous discussion for the squared of the

relative error, we have:

∥ek∥A
∥e0∥A

≤ min
pk:pk(0)=1

max
x∈[λ1,λn]

|pk(x)| ≤ 2

(√
κ− 1√
κ+ 1

)k

(4.2.22)

4.2.2 One Outlier Eigenvalue

Using the derived theorem 3, we can extend it to other types of distributions of eigen-

values. Imagine an extreme case where some matrices have one group of eigenvalues

that are close together and one single eigenvalue that is far away from the cluster. In

that case, we can use Chebyshev differently by focusing its minimizing power across the

clustered eigenvalues and use a simple polynomial to interpolate the outlier eigenvalue.

31

Consider the following proposition:

Proposition 4.3 (Big Outlier CG Convergence Rate). If, there exists a λn that is

much later than all previous n− 1 eigenvalues for the matrix A, then a tighter conver-

gence bound that being only parameterized by the range of clustered eigenvalues can

be obtained and it is:

∥e(k)∥A
∥e(0)∥A

≤ 2

(√
κn−1 − 1√
κn−1 + 1

)k−1

κn−1 =
λn−1

λ1
(4.2.23)

Reader, please observe that the outlier eigenvalue λn plays a smaller role in determining

the convergence rate of the algorithm compared to the previous bound.

Proof. Here, we wish to show that a more focused use of the Chebyshev will introduce

a better convergence rate for the conjugate gradient. We define the notation for the

adapted k-th degree Chebyshev Polynomial over an closed interval: [a, b] as:

T̂
(k)
[a,b](x) := Tk

(
2x− b− a
b− a

)

(4.2.24)

Next, we consider the following polynomial:

pk(x) :=
T̂

(k−1)
[λ1,λn−1]

(x)

T
(k−1)
[λ1,λn−1]

(0)

(
λn − x
x

)

(4.2.25)

Where, we use an k − 1 degree polynomial for the clustered eigenvalues, and then we

multiply that by a linear function (λn− z)/λn which is zero at right boundary λn and

it’s less than one at the left boundary λ1. Next, observe the following facts about the

above polynomials:

λn − x
λn

∈ [0, 1] ∀z ∈ [λ1, λn] (4.2.26)

|pk(x)| ≤
∣
∣
∣
∣
∣

T̂
(k−1)
[λ1,λn−1]

(x)

T̂
(k−1)
[λ1,λn−1]

(0)

λn − x
λn

∣
∣
∣
∣
∣
≤ 1
∣
∣
∣T̂

(k−1)
[λ1,λn−1]

(0)
∣
∣
∣

(4.2.27)

32

As a result, we can apply (4.2.17) we proven for the uniform case, giving us:

T
(k−1)
[λ1,λn−1]

(0) =

∣
∣
∣
∣
Tk−1

(−λn−1 − λ1
λn−1 − λ1

)∣
∣
∣
∣

(4.2.28)

=
1

2
(yk−1 + y−(k−1)) (4.2.29)

where: y =

√
κn−1 + 1
√
κn−1 − 1

, κn−1 =
λn−1

λ1
(4.2.30)

Substituting the value for y we obtain the bound:

∥ek∥A
∥e0∥A

≤ 2

(√
κn−1 − 1
√
κn−1 + 1

)k−1

(4.2.31)

Another case that is worth considering is when there is one eigenvalue that is

smaller than all the other eigenvalues which are clustered at a way larger value than

it, by which I mean the value of λ1 is much smaller than all other eigenvalues and the

other eigenvalues are clustered close together in an interval uniformly.

Proposition 4.4 (Small Outlier CG Convergence Rate). The convergence rate is:

∥ek∥A
∥e0∥A

≤ 2

(
λn − λ1
λ1

)(√
κ0 − 1√
κ0 + 1

)k−1

(4.2.32)

Where κ0 is λn/λ2.

Proof.

w(z) :=
λ1 − z
λ1

(4.2.33)

pk(z) := w(z)

(

T̂
(k−1)
[λ2,λn]

(z)

T̂
(k−1)
[λ2,λn]

(z)

)

(4.2.34)

=⇒ max
x∈[λ2,λn]

|w(x)| = λn − λ1
λ1

(4.2.35)

In this case, the maximal value of the linear function w is achieved via x = λ1, and

33

the absolute value swapped the sign of the function. Therefore, we have:

|pk(x)| =
∣
∣
∣
∣
∣
w(x)

T̂
(k−1)
[λ2,λn]

(x)

T̂
(k−1)
[λ2,λn]

(0)

∣
∣
∣
∣
∣

(4.2.36)

≤
∣
∣
∣
∣
∣

w(x)

T̂
(k−1)
[λ2,λn]

(0)

∣
∣
∣
∣
∣

(4.2.37)

≤
∣
∣
∣
∣

(
λn − λ1
λ1

)

T̂
(k−1)
[λ2,λn]

(0)

∣
∣
∣
∣

(4.2.38)

=⇒ ≤
(
λn − λ1
λ1

)

2

(√
κ0 − 1√
κ0 + 1

)k−1

(4.2.39)

We applied the Chebyshev bound proved in the previous part(theorem 3). And κ0 =

λn/λ2, and that is the maximal bound for the absolute value of the polynomial.

Take notice that it’s not immediately clear which type of outlier eigenvalue makes

the convergence better or worse, but in this case, the weight w(x) introduces a term

that grows inversely proportional to λ1.

4.3 From Conjugate Gradient to Lanczos

We had been brewing the fact that the Iterative Lanczos algorithm and the conjugate

gradient algorithm are related. From the previous discussion we can observe that:

1.) Both Lanczos and CG terminate when the grade of Krylov subspace is reached.

For Lanczos it’s Kk(A|q1) and for CG it’s Kk(A|r0).

2.) Both Lanczos and CG generate orthogonal vectors, for Lanczos they are the qi

vector and for CG they are the ri vectors.

In particular, these 2 properties are hinting at an equivalence between the residual

vectors rj from CG and the orthogonal vectors qj from Lanczos. However, notice that

the iterative Lanczos is for general symmetric matrices while CG is only for positive

definite matrices, therefore We go in both directions to show the connections between

these two iterative algorithms. Here, we refer Lanczos vectors as the sequence of qj

generated by the Lanczos iterations.

34

For this subsection, we state how to represent the parameters from the Lanczos al-

gorithm: αk, βk, qk using aj, bj, rj from the conjugate gradient algorithm. We establish

it by deriving the Lanczos algorithm using the conjugate gradient.

Proposition 4.5. The residual and the Lanczos vectors have the following relations:

q1 = r̂0 (4.3.1)

q2 = −r̂1 (4.3.2)

... (4.3.3)

qj = (−1)j+1r̂j+1 (4.3.4)

Here, r̂j := rj/∥rj∥ and we can fill in the Lanczos tridiagonal matrix using the CG

parameters.

αj+1 =
1
aj

+
bj−1

aj−1
∀1 ≤ j ≤ k − 1

βj =

√
bj−1

aj−1
∀2 ≤ j ≤ k − 2

α1 = a−1
0

β1 =
√
b0

α0

(4.3.5)

Where αj for 1 ≤ j ≤ n− 1 are the diagonal of the tridiagonal matrix Tk generated by

Lanczos, and βj for 2 ≤ j ≤ k− 2 are the lower and upper subdiagonals of the matrix

Tk.

Proof. The proof is long and it’s presented in appendex item: B.8

CG is a special case of applying the Lanczos Iterations with q1 = r0 to a positive

definite matrix. However there are still questions left.

1.) How are the solutions xk generated by CG related to the parameters of Lanczos

iterations?

2.) How are the A-Orthogonal vectors pk from CG related to Lanczos?

35

Remark 4.3.1 (A Better Terminations Conditions for CG). The derivation hinted at

a better termination condition for the CG algorithm. Because CG is equivalent to the

Lanczos iterations initialized with q1 = r0, and we can directly apply from proposition

3.4.2 to get the precise number of iterations of CG under exact arithmetic given r0,

improving the result we got from proposition 4.2.

4.4 From Lanczos to Conjugate Gradient

CG is a special case of Lanczos iterations that solves Tk using LU without pivoting.

4.4.1 Matching the Residual and Conjugate Vectors

In this section, we represent the solution xk, pk from CG using the Lanczos vectors

and entries inside the symmetric tridiagonal matrix generated by Lanczos iterations.

In the remark we highlight some of the insights lead to solvers for symmetric indefinite

systems.

Proposition 4.6 (Lanczos Vectors and Residuals). The Qk is the orthogonal matrix

generated by Lanczos Iteration. To match the Krylov Subspace generated by the Lanc-

zos iterations and CG, we initialize q1 = r̂0, then the following relationship between

Lanczos and CG occurs between their parameters:

yk = T−1
k βξ1

xk = x0 +Qkyk

rk = −βkξTk ykqk+1

(4.4.1)

The quantities αi, βi are the diagonal and the sub/super diagonal of the matrix Tk

from the iterative Lanczos but β without the subscript denotes ∥r0∥. rk is the residual

from the conjugate gradient algorithm, and Qk is the orthogonal matrix generated

from the Lanczos algorithm. For notations, we use ξi to denote the ith canonical basis

vector.

36

Proof. Recall Lanczos recurrence:

AQk = Qk+1

Tk

βkξ
T
k

 (4.4.2)

Recall that the conjugate gradient algorithm takes the guesses from the affine space

of x0 + Kk(A|r0), from section CG and Krylov Subspace 3.3.6 we know that: pk ∈

Kk+1(A|r0), the matrix Pk, Qk spans the same subspace. Consider changing P kr0 into

Qkyk, solving for yk:

xk+1 = x0 +Qkyk (4.4.3)

rk+1 = r0 − AQkyk (4.4.4)

QT
k rk+1 = QT

k r0 −QT
kAQkyk (4.4.5)

=⇒ 0 = βξ1 − Tkyk (4.4.6)

yk = T−1
k βξ1 (4.4.7)

Now to get the residual we simply consider:

rk+1 = r0 − AQkyk (4.4.8)

= r0 − AQkT
−1
k βξ1 (4.4.9)

=⇒ = βq1 − AQkT
−1
k βξ1 (4.4.10)

= βq1 −Qk+1

Tk

βkξ
T
k

T−1
k βξ1 (4.4.11)

= βq1 − (QkTk + βkqk+1ξ
T
k)T

−1
k βξ1 (4.4.12)

= βq1 − (Qkβξ1 + βkqk+1ξk+1T
−1
k βξ1) (4.4.13)

= −βkqk+1ξ
T
k T

−1
k βξ1 (4.4.14)

On the third line (4.4.10) we recall the fact that q1 = r̂0 which initialized the Krylov

subspace for the Lanczos iteration. At the 4th line (4.4.11), we make use of the Lanczos

vector recurrences and we simply substituted it.

37

By observing the fact that ξTk T
−1
k ξ1 the (k, 1) element of the matrix T−1

k which is

a scalar, we can conclude that the residual from CG and the Lanczos vector are scalar

multiple of each other, therefore, rk from the CG must be orthogonal as well.

Proposition 4.7 (Lanczos Vectors and Conjugate Vectors). The Pk matrix as derived

in the CG algorithm can be:

Pk = QkU
−1
k (4.4.15)

Where Tk = LkUk, representing the LU decomposition of the tridiagonal matrix Tk

from the Lanczos Iterations. Because of the tridiagonal nature of the matrix Tk, Lk

will be a unit bi-diagonal matrix and Uk will be an upper bi-diagonal matrix.

Proof. Verify the fact that Pk as defined above is A-Orhogonal:

P T
k APk (4.4.16)

= (QkU
−1
k)TAQkU

−1
k (4.4.17)

= (U−1
k)TQT

kAQkU
−1
k (4.4.18)

= (U−1
k)TTkU

−1
k (4.4.19)

= (U−1)TkLk (4.4.20)

Reader please observe that Uk is upper triangular, therefore, it’s inverse it’s also upper

triangular, therefore, U−T
k is lower triangular, and because Lk is also lower triangular,

their product is a lower triangular matrix, and therefore, the resulting matrix above is

lower triangular, however, given that P T
k APk is symmetric, therefore, U−T

k Lk will have

to be symmetric as well, and a matrix that is lower triangular and symmetric has to

be diagonal. Therefore, the columns of Pk are conjugate vectors.

Next we show that the xk is a specific combinations of columns of Pk and it’s

38

related to elements in matrix Uk:

xk = x0 +Qkyk (4.4.21)

= x0 +QkT
−1
k βξ1 (4.4.22)

= x0 +QkU
−1
k L−1

k βξ1 (4.4.23)

= x0 + PkL
−1
k βξ1 (4.4.24)

4.4.2 Matching the ak, bk in CG

Similar to how we can generate the tridiagonal matrix for the Lanczos iterations with

q1 = r̂0, we can also generate the parameters ak, bk in the CG algorithm using parame-

ters from the Lanczos iterations. To achieve it, one can simply build up the recurrences

for the yk vectors using the elements from the Lk, Uk matrix which comes from LU

decomposition of the Tk matrix. This will come at the expense of losing some degree

of accuracy because it’s equivalent to doing the LU decomposition of Tk without pivot-

ing, but it comes at the advantage computing ξTk T
−1
k ξ1 with as little efforts as possible.

Let’s take a look.

For discussion in this section, we briefly switch the indexing and let it start counting

from one instead of zero.

Pk =
[

p1 p2 · · · pk

]

Qk =
[

q1 q2 · · · qk

]

(4.4.25)

Next, when Tk is invertible, we consider the LU decomposition of the symmetric tridi-

agonal matrix (See remark for more discussion about the conditions for invertibility

39

of the matrix):

Tk = LkUk =

1

l1 1

.

lk−1 1

u1 β1

u2 β2

. . . βk−1

uk

(4.4.26)

The upper diagonal of Uk is indeed the same as the upper diagonal of the symmetric

tridiagonal matrix Tk. And recall the expression for xk from the previous section, we

have:

xk = x0 + PkL
−1
k βξ1 (4.4.27)

xk − xk−1 = PkL
−1
k βξ1 − Pk−1L

−1
k−1βξ1 (4.4.28)

= Pkβ(L
−1
k):,1 − Pk−1β(L

−1
k−1):,1 (4.4.29)

= β(L−1
k)k,1pk (4.4.30)

=⇒ xk = xk−1 + β(L−1
k)k,1pk (4.4.31)

On the third line (4.4.29), we factor out the last column for the matrix Pk. Next, we

wish to derive the recurrence between pk+1 and pk. Which is:

Pk = QkU
−1
k (4.4.32)

PkUk = Qk (4.4.33)

=⇒ βk−1pk−1 + ukpk = qk (4.4.34)

ukpk = qk − βk−1pk−1 (4.4.35)

pk = u−1
k (qk − βk−1pk−1) (4.4.36)

40

In fact, a short recurrence can be built for u−1
k and (L−1

k)k,1, we stated it below:

uk+1 = αk+1 − β2
k/uk

lk = βk/uk

(L−1
k+1)k+1,1 = −lk(L−1

k)k,1

(4.4.37)

The derivation for above recurrence is more relevant to the LU decomposition of a

Tridiagonal matrix, which is a digression and we put the proof in appendix item B.9.

Remark 4.4.1. Using the Lanczos iterations, we derived the conjugate gradient with-

out using the fact that A is symmetric positive definite, this fact hinted at potential

new algorithms that can solve symmetric indefinite systems directly.

The Lanczos algorithm for linear systems (we refer to the method derived in the

above section) is a special case of FOM [14] when the matrix A is symmetric. The above

algorithm is just FOM with a short term recurrence for its parameters, and it’s based

on convenience of solving a symmetric tridiagonal matrix. It’s implied from the above

derivation that under exact arithmetic, CG can be applied to a symmetric indefinite

system, if we have the luck where Tj is non-singular for all j ≤ k. Recall that when we

derived the CG algorithm, we convert it into solving the system: P T
k r0 = P T

k APkw,

and when the matrix A is indefinite, we can still solve the system by attaining the

saddle point for the indefinite error norm.

However there are two problems for solving symmetric indefinite using CG. The

first problem is the bad numerical accuracy of using the recurrence to perform LU

decomposition on TK without pivoting. Another problem is Tk can be singular during

some iterations of the Lanczos algorithm. For example, Tj will become singular if

A is a symmetric tridiagonal matrix with zeros as its diagonals and all ones on its

subdiagonals. The good part is that Tj never will not become singular for more than

2 consecutive iteration[4]. These problems can be overcome by considering something

other than LU without pivoting. In fact, the work by C. C. Paige and M. A. Saunders

extends the idea and derives algorithms that can solve a symmetric indefinite system

41

without using the norm equation [9].

5 Effects of Floating-Point Arithmetic

In this section, we exam the behaviors of the Lanczos iterations and CG algorithms

under floating-point arithmetic using numerical experiments and some analysis. We

wish to get deeper insights about the behaviors of Lanczos and conjugate gradient

under floating-point arithmetic.

5.1 Partial Orthogonalization and Full Orthogonalization

The floating-point round of errors in the CG algorithm accumulates and manifests

as loss of orthogonality and loss of conjugacy for the vectors rk, pk. Other stable

algorithm such as Modified Gram Schmidt orthgonalize the current vector against all

previous vectors to assert orthogonality of the basis vector, CG on the other hand,

relies only on the short recurrences of rk, pk. One way to mitigate the effect is to

use the CDM algorithm’s projector to re-orthogonalize the conjugate vectors and then

reorthogonalized residual vectors against all previous residuals vectors. Such idea is

not new and it’s stated in the original paper by Hestenes and Stiefel back in 1952[8];

in this section we present the more computationally expensive idea in the paper by

Hestenes and Stiefel, but using what we derived in the first section.

Recall the proof for proposition 3.7. Next, we inductively consider the case where

the newest residual vector is involving some round-off error rk+1 and it breaks the

42

orthogonality conditions rk+1 ⊥ rj ∀ 0 ≤ j ≤ k:

(APk)
T rk =

⟨p0, Ark⟩

⟨p1, Ark⟩
...

⟨pk−1, Ark⟩

(5.1.1)

= a−1
k−1⟨rk, (rk−1 − rk)⟩ξk +

k−1∑

j=0

⟨pj, Ark⟩ξj (5.1.2)

pk := rk + bkpk −
⟨rk, rk−1⟩
⟨rk−1, rk−1⟩

pk −
k−1∑

j=0

⟨pj, Ark⟩
⟨pk, Apk⟩

pj (5.1.3)

rk := rk −
k−1∑

j=0

⟨r̂j, rk⟩r̂j (5.1.4)

Here, we generate the conjugate vectors pk correctly by faithfully expanding the term

(APk)
T rk, and then we update the residual rk into rk by orthogonalizing it against all

previous residual vectors. Such procedure requires expensive storage of previous vec-

tors pk. One can use alternative formulas to A-orthogonalize pk and re-orthogonalize

rk. In addition, we have the options for partially orthogonalizing the rk, pk vectors for

less memory usage.

5.2 Relative Errors of CG Under Floating-Point Arithmetic

We investigate the relative energy norm of the error for fully re-orthogonalized CG,

partially re-orthogonalized CG, and CG without re-orthogonalization numerically.

5.2.1 Experiments

Here we use full re-orthogonalization to emulate the effects of exact arithmetic. the

step required for convergence is less than or equal to the number of unique eigenvalues

for the symmetric definite matrix, this is established in part termination of CG 4.2 of

the discussion. However, in practice, this is not always the case. Similar experiments

are conducted in Greenbaum’s book chapter[6] 4. In this section, we replicate the same

set of experiments using modern Julia to showcase the extra steps required for the CG

43

algorithm to converge. For testing the convergence of the algorithm, we use float16

(16 digits binary digits), λmin = 1e− 4, λmax = 1 to exaggerate the convergence a bit,

and the RHS vector b is all ones and x0 = b+ϵ (ϵ is some tiny random vector as noise).

The spectrum of the matrix we are using is taken to be the same from Greenbaum’s

book [6] page 62.

λmin +

(
j

N − 1

)

(λmax − λmin)ρ
N−j+1 ∀ 1 ≤ j ≤ N − 1, 0 ≤ ρ ≤ 1 (5.2.1)

If the value of ρ is close to zero, then the eigenvalues are clustered around the origin,

if it’s close to 1, then the eigenvalues are tend to be more evenly distributed around

the interval [λmin, λmax].

44

(a) ρ = 0.9

(b) ρ = 1

Figure 5.2.1: The relative energy norm error for different methods. Blue solid line: The exact conjugate gradient convergence. Purple
dot dashed: The conjugate gradient that is partially orthogonalized with previous 8 residual and conjugate vectors. orange dashed: the
Original conjugate gradient. Green dot: The tighter theoretical upper bound derived by Chebyshev (4.2.20). The matrix is 256 × 256

The Chebyshev bound is no longer a tight bound because the distribution of the

eigenvalues is not perfectly uniform for ρ = 0.9. The partially orthogonalized methods

diverge from the exact error after more steps of iterations compared to the relative

error without any orthogonalizations. These are seen in (fig 5.2.1a). In contrast, on the

right with ρ = 1, then the eigenvalues are uniformly distributed, the relative energy

errors of all 3 methods aligns and overlapped into one curve in (fig 5.2.1b) at the

45

expense of slower convergence for the few iterations at the beginning.

Remark 5.2.1. The convergence is disappointing under floating-point arithmetic and

the promised efficiency of the algorithm is not there anymore even if the matrix is

not necessarily ill-conditioned. Just from (fig 5.2.1) it seems like outlier eigenvalues

provide fast convergence under full orthogonalization, but not for floating point.

However, please observe from (fig 5.2.1b) that, all these 3 methods are identical,

and the Chebyshev bound is relatively tight at the first few iterations of the algorithm,

which is related to the discussion later and linked to the fact that the characteristic

polynomial of Tk has roots closer to the spectrum of A where eigenvalues are sparse

before converging to region of the spectrum where eigenvalues are denser.

5.3 Paige’s Convergence rate of CG under Floating Points

In this section we present the backwards analysis of the CG convergence rate in a

more thorough manner and examine its consequences. When floating-point arithmetic

is used, the eigenvalues of the tridiagonal matrices might introduce ghost eigenvectors

for the Lanczos Iterations, and using the equivalence of the Lanczos iterations and

CG, we can capture a posteriori bound on how much the error is exactly during the

iterations of CG.

5.3.1 Bounding the Relative Residuals

Recall from proposition Proposition 4.6 that the residuals of the CG can be expressed

in terms of the Lanczos vectors. However, the Lanczos iterations under floating-point

doesn’t produce perfectly orthogonal Lanczos Vectors (The lost of orthogonality is

experimented and visualized in the next section), Q̃k is not quite orthogonal, meaning

that Q̃H
k AQ̃k ̸= Tk where Tk is the tridiagonal matrix from the Lanczos iterations.

However the Lanczos iterations will still solve for yk using the expression yk = βT−1
k ξ1,

the algorithm still Tk produces a perfectly tridiagonal matrix Tk. At first glance, tiny

round-off errors in the Lanczos vectors are very problematic.

Surprisingly, the recurrence formula for Lanczos still holds to some extent, in ad-

46

dition we can leverage the fact that yk is solved exactly and assume: yk = βT−1ξ1 is

at least, exact. Then it left us with fewer types of floating-point errors to keep track

of. Next, we proceed to look for the residual of the CG algorithm by stating that the

Lanczos recurrences2:

AQk = Qk+1

Tk

βkξ
T
k

+ Fk (5.3.1)

Reader, please reflect on the fact that the Qk which is not orthogonal, and we are

fixing the recurrences with Fk, a matrix representing the floating error to correct it so

that the equality holds true. ∥Fk∥ is small and it’s on the magnitude of O(ϵ∥A∥).

rk = r0 − AQkyk (5.3.2)

rk = r0 −

Qk+1

Tk

βkξ
T
k

+ Fk

 yk (5.3.3)

rk =

r0 −Qk+1

Tk

βkξ
T
k

 yk

︸ ︷︷ ︸

=−βkξ
T
k
ykqk+1

+FkβT
−1
k ξ1 (5.3.4)

=⇒ ∥rk+1∥
∥r0∥

≤ βk∥ξTk T−1
k ξ1qk+1∥+ ∥FkT

−1
k ξ1∥ (5.3.5)

∥rk+1∥
∥r0∥

≤ βk|ξTk T−1
k ξ1|+ ∥Fk∥∥T−1

k ξ1∥ (5.3.6)

We make use of Proposition 4.6 and obtain a similar expression because it didn’t make

use of the fact that Qk is orthogonal. This time, we take Fk into account. The residual

is now bounded by the sum of scalar ξTk T
−1
k ξ1 and the floating-point error matrix Fk

produced by the Lanczos iterations.

Remark 5.3.1 (When Finite Arithmetic Lanczos is Exact). We can bound the first

term that made up the upper bound for the residual of CG using previous convergence

results of CG under exact arithmetic; recall CG convergence rate (theorem 3). It can

2statement 2.11 from C. C. Paige’s 1980 paper.[10]. The result is surprising in the sense that Qk

is not orthogonal in finite precision doesn’t affect the recurrence by much.

47

be applied here for the first term in (5.3.6): βk|ξTk T−1
k ξ1|.

This is true because if we were to perform an CG on the Tk+1 produced by the finite

precision algorithm with the initial Lanczos vector q1 being ξ
(n)
1 , then its residual rk of

equivalent CG would be exact and it’s given as −βkT−1
k ξkqk+1, but with qk+1 = ξ

(n)
k+1,

the k+1 th standard basis vector in R
n, and Tk = (Tk+1)1:k,1:k. And to our excitement,

we already have the exact arithmetic bound for rk+1 proven in theorem 3.

5.3.2 Paige’s Theorem and Floating-point Convergence of CG

We now introduce a new theorem proposed by Paige in chapter 4 of Greenbaum’s

book[6], originally appeared in 3.48 of C.C Paige’s Thesis[10]. It gives a bound to

the CG with floating-point errors by bounding the condition number of Tk from the

Lanczos iterations. It’s stated as follows:

Theorem 4 (Paige’s Theorem). The eigenvalues θ
(j)
i , i = 1, · · · , j of the tridiagonal

matrix Tj satisfies:

λ1 − j5/2ϵ2∥A∥ ≤ θ
(j)
i ≤ λn + j5/2ϵ2∥A∥ (5.3.7)

ϵ2 :=
√
2max{6ϵ0, ϵ1} (5.3.8)

Along with this theorem, the following quantities from Paige are also defined:

ϵ0 ≡ 2(n+ 4)ϵ (5.3.9)

ϵ1 ≡ 2(7 +m∥ |A| ∥/∥A∥)ϵ (5.3.10)

ϵ0 <
1

12
k(3ϵ0 + ϵ1) < 1 (5.3.11)

∥Fk∥ ≤
√
k(ϵ1)∥A∥ (5.3.12)

∥qTj qj − 1∥ ≤ 2ϵ0 (5.3.13)

βj ≤ ∥A∥(1 + (2n+ 6)ϵ+ j(3ϵ0 + ϵ1)) (5.3.14)

The quantity k is the current iterations number of the Lanczos Iterations, j ≤ k. m

is the maximum number of non-zero elements in the matrix A, n is the size of matrix

48

A and ϵ is the machine precision. Using Paige’s theorem, we can bound the condition

number for the matrix Tk+1 produced by the finite precision Lanczos, which is given

by:

κ̃ =
λn + (k + 1)5/2ϵ2∥A∥
λ1 − (k + 1)5/2ϵ2∥A∥

(5.3.15)

Using (remark 5.3.1), we can make the following proposition

Proposition 5.1.

|βkξTk T−1
k ξ1| ≤ 2

√
κ̃

(√
κ̃− 1√
κ̃+ 1

)k

(5.3.16)

κ̃ is the upper bound of the condition number of the Tk matrix (from (5.3.15)). Please

observe that the about quantity is one of the terms for the upper bound on the relative

residual of CG presented back in (5.3.6).

Proof. Using the lemma A.1.1 in appendix, we can derive the relations between the

2-norm of the relative residuals and the energy norm of the relative error:

∥Aek∥
∥Ae0∥

≤ κ(Tk)
∥ek∥A
∥e0∥A

≤ 2
√

κ(Tk)

(√
κ̃− 1√
κ̃+ 1

)k

(5.3.17)

∥rk∥
∥r0∥

= |βkξTk T−1
k ξ1| by (remark 5.3.1) (5.3.18)

=⇒ |βkξTk T−1
k ξ1| ≤ 2

√
κ̃

(√
κ̃− 1√
κ̃+ 1

)k

(5.3.19)

The third inequality is simply from CG Convergence Rate (theorem 3) when we assume

that the eigenvalues are uniformly spaced in the convex hull of the spectrum of A. The

first fraction is actually the relative error of the 2-norm of the residual because Aek = rk

by definition. Substituting the quantity κ(Tk), the condition number of the matrix Tk,

which we figured out using Paige’s theorem and denoted it as κ̃.

Finally, if we assume that T−1
k is invertible, which requires that the conditions for

all the quantities: ϵ0, ϵ1 holds true, and λ1 − (k + 1)5/2ϵ2∥A∥ > 0. Finally, we make

49

can bound the relative residual of the CG algorithm by considering:

∥rk+1∥
∥r0∥

≤ βk∥ξTk T−1
k ξ1qk+1∥+ ∥FkT

−1
k ξ1∥ (5.3.20)

≤ βk|ξTk T−1
k ξ1|∥qk+1∥+ ∥Fk∥∥T−1

k ξ1∥ (5.3.21)

≤ 2∥qk+1∥
√
κ̃

(√
κ̃− 1√
κ̃+ 1

)k

+
√
k(ϵ1)∥A∥∥T−1

k ∥ (5.3.22)

Now, observe that |qTj qj−1| ≤ 2ϵ0 from (5.3.13), which implies that ∥qk+2∥2 ≤ (1+3ϵ0)

which is ∥qk+1∥ ≤
√
1 + 2ϵ0. In pursuit of mathematical beauty, we look for alternative

expression for the quantity ∥A∥∥T−1
k ∥ giving us:

∥A∥∥T−1
k ∥ =

λn
λ1 − k5/2ϵ2∥A∥

≤ κ̃ (5.3.23)

=⇒ ∥rk+1∥
∥r0∥

≤ 2
√
1 + 2ϵ0

√
κ̃

(√
κ̃− 1√
κ̃+ 1

)k

+
√
k(ϵ1)κ̃ (5.3.24)

This is the upper bound on the convergence rate for the conjugate gradient Method

under floating-point arithmetic.

Remark 5.3.2. This upper bound showed that if the Tk+1 generated by floating point

CG is nonsingular, βk ̸= 0, then the CG method will still have a chance to converge in

the future iterations. Simplyput, it doesn’t matter if the round-off error accumulated,

conjugate gradient will converge as long as the matrix is not too ill-conditioned, or A

being too pathological to worth with.

Finally, I want to point out the fact that Paige’s theorem (theorem 4) is derived

using forward error analysis on the Lanczos Iterations, which is the absolute worst

case. For most cases in modern computing platforms, the summation process of vector

dot products has much higher floating-accuracy compare to older computing platforms

due to the use of parallelism, or floating-point specific summation instructions, which

reduces the relative sizes for the summands, hence reducing the total round-off error

accumulations. The bound of convergence rate we derive can be a huge over estimation.

50

5.4 Ghost Eigenvalues and Losing Orthogonality

The name ghost eigenvalues refers to the phenomena where the Lanczos Algorithm

seems to produce tridiagonal matrix Tk whose eigenvalues are clustered extremely

close to a simple eigenvalues of the matrix A, when in fact, those extremely close

eigenvalues are a single eigenvalue of the original matrix A’s spectrum.

The name “ghost eigenvalues” was spotted from lecture 36 of Trefethen’s Book[17],

the exact origin of the term is not important. This phenomena is more pronounce to

eigenvalues in the exterior of A’s spectrum. We know for a fact that the tridiagonal

matrix produced via Lanczos can’t have any repeated eigenvalues (appendix item B.5).

What happens in this case is the floating point error propagating through the Lanczos

Iterations causing lost of orthogonality of Qk and eventually produce ghost eigenvalues.

5.4.1 Ghost Eigenvalues Experiments

Here, we conducted numerical experiments and carefully reproduce the phenomena for

a diagonal matrix A with diagonals given by the formula:

λi =

(

−1 + 2(i− 1)

(n− 1)

)3

1 ≤ i ≤ n (5.4.1)

where A ∈ R
n×n. This matrix is particularly good for reproducing the phenomena.

For this experiment, we set n = 64 and we use Float64.

We run the Lanczos iterations with q1 being the vector of all ones, we marked the

smallest and largest 10 eigenvalues during the iterations and plotted their trajectories

from iteration 20 to 64. The results can be seen in (figure 5.4.1 left). On figure

5.4.1 right, we made the plot for what would happen if the Lanczos iterations are free

of numerical round-off error. We didn’t use exact arithmetic, instead, we simply re-

orthogonalized all the Lanczos vector qk using all previously obtained Lanczos vectors

to emulate the effect, which is just an Arnoldi iteration. Please bear in mind that

there are eigenvalues in the middle interior part of the spectrum, they are just not

plotted in the figure.

51

Figure 5.4.1: The highest and lowest 10 eigenvalues of the matrix Tk during the Lanczos Iterations are being tracked by their relative
order. During each iteration, the first, the second, the third, ... etc eigenvalues of Tk are linked together by a line in a different color.
Left is Lanczos with numerical round-off error, right is Lanczos iterations that fully re-orthogonalize qk for each iteration which emulates
the behaviors under exact arithmetic.

Recall from the Cauchy Interlace Theorem (theorem 6), the eigenvalues of the

tridiagonal matrix Tk+1 has to be in between each eigenvalues of Tk except for the

first and the last eigenvalue of Tk+1. This implies that, the θ
(k)
i , the i th eigenvalues

during the k th iteration will move monotonically upwards or downwards during the

Lanczos iterations. The ghost eigenvalues on the figure appear when some of the

interior eigenvalues suddenly switch to another eigenvalue’s trajectory that is on the

exterior of the spectrum. It appears as though the matrix Tk has repeated eigenvalues

which we know is not true due to (appendix item B.5), they are just very close.

However, judging the eigenvalues of the matrix Tk alone will not distinguish be-

tween two very close eigenvalues correspond to two different eigenvalues of A or it’s

due to the floating-point round-off error. It also will not tell whether the Lanczos

vectors are losing orthogonality, even if the eigenvalue trajectories seem to suggest it.

The lost of orthogonality must happen for the Lanczos vector while at the same time,

we observed extremely close eigenvalues of Tk clustring around eigenvalues of A to

confirm the fact that they are indeed ghost eigenvalues.

We can’t tell it because if I keep the matrix Tk we used to produce fig 5.4.1 generated

from a Lanczos iterations and use it as A with q1−ξ1, then it will reproduce exactly the

same graph as in left of fig 5.4.1 when we plot out the trajectories of the eigenvalues

52

of Tk, but the Qk in this case is the k × k identity matrix and it’s exact (Using the

exact same idea appeared in remark 5.3.1). Now consider performing another Lanczos

iterations A := Tk it but with the initial vector ξ1, then we will exactly reproduce A

itself because it’s tridiagonal. But in this case, the eigenvalues of Tk are exact after

termination of Lanczos iteration. In this case, all eigenvalues are actually presented in

the original matrix A, which is just Tk, itself.

In fact, the ghost eigenvalues here are produced by floating-point errors because

firstly we know what the actual eigenvalues of A is, we made A. To make sense of it

better intuitively, we observe from the experiments that the loss of orthogonality of

Qk happens together with ghost eigenvalues on the spectrum of Tk. If the Qk matrix

is perfectly orthogonal, then there are no ghost eigenvalues, regardless of what the

trajectories of the eigenvalues of Tk look like. In fact, a corresponding plot of QH
k Qk

are plotted in (fig 5.4.1 left) for demonstrating the loss of orthogonality for the same

diagonal matrix A proposed earlier. We plotted the heat map of the matrix QH
k Qk

directly as well.

Figure 5.4.2: left: The heatmap of the plot of the absolute values of the matrix QT

k
Qk. right: The plot of QT

k
AQk from floating-point

Lanczos iterations

In addition to the lost orthogonality of the matrix Qk, we also visualized the actual

tridiagonal matrix reproduced by QkAQk which is plotted in (fig 5.4.1 right). Observe

that most of the off tridiagonal entries are non-zero and relatively huge, which doesn’t

worry us too much because A itself has a large condition number. What is concerning

is the blob of non-zero entries on the top left and the bottom right of the plot. And

this is a significant loss of orthogonality created by floating-point arithmetic.

53

Remark 5.4.1. As a final remark for these numerical experiments, I suggest an in-

tuitive way of understanding them. Which will be useful when we actually wish to

analyze it rigorously. Simply put, the Lanczos Iterations might “forget” about the

eigenvalues when it converged (usually manifested as the stable trajectories of eigen-

values on the exterior of the spectrum for the matrix Tk in (fig 5.4.1)), and when it

happens, the Lanczos vectors produced by the algorithm has lost its orthogonality cor-

respondingly, which then causes the interior eigenvalues of Tk to shift, creating ghost

eigenvalues that doesn’t exist in the spectrum of A.

Secondly, there is another phenomenon of Ritz values during the iterations of Lanc-

zos iterations called misconvergence. It describes the process which a Ritz value is

stuck between two eigenvalues of A, stagnated for few iterations and then suddenly

shifts away, which is extremely similar to the shifting we observed in figure 5.4.1. It

happens when 2 eigenvalues of matrix A is extremely close to each other. It should not

be confused with ghost eigenvalues because they are two distinct phenomena where

misconvergence can happen under exact arithmetic. For more description of such phe-

nomena, refer to the first chapter from the book by M. G. Cox and S. Hammarling

[1].

5.4.2 Lanczos Vectors Losing Orthogonality on converged Ritz vectors

To gain a better understanding, let’s define the notion of Ritz values and Ritz vectors.

For our discussion, the Ritz value θ
(k)
i are the ith eigenvalues of the matrix Tk from

the and the Ritz vectors are Qks
(k)
i where s

(k)
i is the ith eigenvector for the matrix Tk.

Recall from remark 3.4.2, the characteristic polynomial of Tk is the monic polynomial

that minimizes the 2-norm error for the vector pk(A)q1 among all monic of the same

degree; therefore intuitively, the Ritz values and Ritz vectors approximates eigenvalues

and eigenvectors of matrix A due to the approximating characteristic polynomial. Let’s

suppose that s
(k)
i for Tk is a good approximation for λj, let’s consider the Lanczos

54

iterations recurrences:

AQk = QkTk + qk+1βkξ
T
k (5.4.2)

AQks
(k)
i = θ

(k)
j Qks

(k)
i + qk+1βkξ

T
k v (5.4.3)

AQks
(k)
i = θ

(k)
j Qks

(k)
i + βkqk+1(s

(k)
i)k (5.4.4)

AQks
(k)
i − θ

(k)
j Qks

(k)
i = βkqk+1(s

(k)
i)k (5.4.5)

Upon brief examinations, convergence of the Ritz value θ
(k)
i depends on βk and (s

(k)
i)k,

intuitively as the Krylov subspace expands, it contains more and more space for the

the eigenvectors of A, and the Ritz vector will have more “room” to get closer to

the eigenvector of A, by the approximation property of Lanczos. Assuming good

convergence of s
(k)
i convergences so that the value of βk, (s

(k)
i)k are both small (it’s

true regardless of orthogonality of Qk), then we consider the projection of most recent

Lanczos vector qk onto the Ritz vector Qks
(k)
i , which is qTkQks

(k)
i = (s

(k)
i)k. We expect

the projection onto the Ritz vector to be small if the Ritz vector is converging to an

eigenvector of A.

However, under floating-point arithmetic, once the Ritz vector s
(k)
i is converging

to an eigenvalue of A, then the projection of the latest Lanczos vector onto the Ritz

vector begins to grow. On the plot showed in figure 5.4.2, we projected the log absolute

value of qTkQks
(k)
i for i = 1, 2, 3 for all k = 20, · · · , 64, and we used the same setup

from the last section where we demonstrated ghost eigenvalues. For comparison, figure

5.4.2 showed us what happens in exact arithmetic. One very important observation to

make from figure 5.4.2 is that the peak of the blue curve, projection onto the largest

Ritz value happens around iteration 3.8, and around that exact same iteration in figure

5.4.1 is when the second-largest eigenvalue of Tk decides to shift over to the blue curve.

Bear in mind that this is in a log plot, and without the log it looks like a sharp spike.

While floating arithmetic may sometimes cause the most recent Lanczos vector

to lose orthogonality against converged Ritz vectors, the converse is not true. The

phenomena itself doesn’t imply the fact that floating point error is present and it’s

55

causing lost of orthogonality of Lanczos iterations, much similar to what had been

discussed about ghost eigenvalues. To illustrate, an experiment is conducted in this

way:

1. Tn is generated from the diagonal matrix A from finite precision Lanczos itera-

tions. The same setup from ghost eigenvalues 5.4.1.

2. Lanczos is then performed on Tk initialized with q1 = ξi.

3. The projection the most recent lanczos vector qk is projected onto Qks
(k)
i for

1 ≤ i ≤ 3. Notice that Qk is gonna be the k × k identity matrix. ‘’

The results of the projection are showed in fig 5.4.2. Please observe that projection

onto the second Ritz vector Qks
(k)
2 seems to decrease and them jumped up again. This

happens around the same iterations when the second largest eigenvalue of Tk shift to

the trajectory of the largest eigenvalue in fig 5.4.1 left. However, this time the matrix

Qk is perfect orthogonal. Therefore, small ritz projections of the most recent Lanczos

vector doesn’t mean that the Ritz value has converged for all future iterations. If qk is

losing orthogonality against some Ritz vectors after it has converged, it doesn’t mean

that Qk is losing orthogonality.

Figure 5.4.3: Projection of floating-point Lanczos vector qk onto 3 of the largest Ritz vectors: Qks
(k)
i

, for i = k, k − 1, k − 2

56

Figure 5.4.4: projection of the exact Lanczos vector qk onto 3 of the largest Ritz vectors: Qks
(k)
i

, for i = k, k − 1, k − 2

Figure 5.4.5: The projection of most recent Lanczos vector qk onto the first 3 Ritz vectors: Qks
(k)
i

for 1 ≤ i ≤ 3, it’s performed on a
tridiagonal matrix Tk generated by finite precision Lanczos with q1 = ξ1.

Remark 5.4.2 (Convergence Bounds on Ritz values). The above presentation for the

convergence of a Ritz Value and Ritz vector is an oversimplification. What happened

is complicated. The characteristic polynomial of Tk minimizes under some weighted

57

measured, hence the Ritz values tends to approximate the eigenvalues of A, but this

characteristic alone cannot dictate the way certain Ritz values converges.

It’s not always the case that θ
(j)
1 for example, it’s the best approximation for λ1

of A, and it’s especially true when iterations j is relative small compare to n. The

theoretical importance is to find an interval of how far are the λi from θ
(k)
i′ , where λi

denotes the actual eigenvalue in A where the Ritz value θ
(k)
i′ is trying to approximate.

The bound for the Ritz interval was refined by Y. Saad back in 1980[12] and first

discovered by Shmuel Kaniel back in 1966[16].

5.4.3 Greenbaum’s Tiny Interval Experiments

A smarter way of looking at the phenomenon of ghost eigenvalues (figure 5.4.1 left)

is to take advantage of the clustering of the ghost eigenvalues and think of them as

the eigenvalues of a potentially a larger matrix, denoted as Ã whose eigenvalues are

clustered around the eigenvalues of A within a tiny interval. The idea is if we perform

exact Lanczos on A, then we get similar results for applying floating-point Lanczos

on Ã. Simply put, due to the effect of round of errors, the floating-point Lanczos

iterations can’t see the spectrum of A clearly and instead, it sees Ã whose eigenvalues

are smeared out version of A, and there are many of them clustered around. More

specifically, assuming A has eigenvalues: λ1, · · · , λn, the eigenvalues of Ã lies in:

n⋃

n=1

[λi − δ, λi + δ] (5.4.6)

As a result, running an exact Lanczos/CG on Ã produces similar convergence compared

to the floating-point version of the algorithm. Experiments where conducted by A.

Greenbaum and Z. Strakos in 1992[5]. Here, we reproduce the experiments on CG and

check on the convergence rate of the algorithm.

To reproduce the effects, The same matrix parameterized by ρ back in matrix

5.2.1. The tiny intervals are set by me via trials and errors. For the experiments, we

set δ = 2e-5∥A∥ϵ where ϵ is the machine epsilon for Float64; and 100 equally spaced

eigenvalues on the spectrum for the matrix Ã are clustered inside of the tiny intervals.

58

The right hand side vector b, b̃ are chosen to be a vector of all ones. The matrix A is

chosen to be 64× 64, and hence Ã is 6400× 6400.

Both exact and float CG are run and terminates once ∥ek∥A
∥e0∥A is less than 10−10. By

exact CG I mean CG with full re-orthogonalizations.

(a) Applying CG without re-orthogonalizations on Ax = b, the original matrix without the tiny intervals.

(b) Applying CG with full re-orthogonalizations on Ãx = b̃. Ã has tiny intervals.

Figure 5.4.6

The results of the experiments are plotted out in fig 5.4.6. For a tolerance of

10−10 on the relative energy norm of the error, we reproduced the behaviors of the CG

59

without re-orthogonalizations using the tiny intervals ideas. In fig 5.4.6a is the CG

without any re-orthogonalizations applied on Ax = b for different values of ρ, and in

fig 5.4.6b, it’s the convergence of the CG with full re-orthogonalizations on the system

Ãx = b̃.

Remark 5.4.3 (Orhogonal in Another Measure, and an open Question). The idea

of tiny intervals allows for a good predictions for the behaviors of CG and Lanczos

when finite precision arithmetic is involved. The underlying mechanism was shown

by Greenbaum in 1989[3]. The Lanczos iterations generates tridiagonal matrix whose

characteristic polynomial is orthogonal under a discrete measure at eigenvalues of A

weighted by the vector (UHq1)
2, (appendix item B.4), however under finite arithmetic,

they are no longer orthogonal under the original measure but instead, they are orthog-

onal under a new tiny intervals around the eigenvalues of A.

It’s hypothesized that the tiny intervals are fixed, or grows slowly wrt to the number

of iterations, however no current bounds are tight enough to show that’s true.

5.5 Another Paige’s Theorem

This other Paige theorem highlights the systematic ways of Ritz vector losing orthog-

onality. The theorem is stated in C.C Paige 1980 3.13[10], a more thorough proof

is presented in Demmel’s Book[2] theorem 7.3 on page 381. The original proof pre-

sented is succinct and required reader to read 2 of Paige’s thesis. Here we present the

thorough proof for the sake of appreciation.

The theorem highlights the fact that when the Ritz value converged (βk, (v
(k)
i))k

is small), the Lanczos vector qk+1 loses orthogonality against the Ritz vector. It tells

us that when under floating-point arithmetic, converged Ritz vector leads to lost of

orthogonality of Lanczos vector, and they lose orthogonality along the direction of the

converged Ritz vectors.

60

Theorem 5 (Another Paige’s Theorem).

(y
(k)
i)T qk+1 =

O(ϵ∥A∥)
βk(vi)k

(5.5.1)

y
(k)
i := Qk(v

(k)
i)k (5.5.2)

And we define the following quantities:

Tk :: Tridiagonal at step k of Lanczos (5.5.3)

Qk :: Orthogonal matrix at step k of Lanczos (5.5.4)

Vk = [v
(k)
1 v

(k)
2 · · · v(k)k] :: Eigenbasis matrix atrix for Tk (5.5.5)

θ
(k)
i :: the eigenvalues for v

(k)
i , Ritz Value (5.5.6)

Fk :: The floats error matrix from Lanczos recurrence (5.5.7)

ϵ :: The machine Epsilon (5.5.8)

Proof. For simplicity, we ignore all the subscript goes under Qk, qk+1, Tk, Fk, v
(k)
i , y

(k)
i .

Starting with the Lanczos recurrences under floating-point arithmetic:

AQ = AT + βqξTk + F (5.5.9)

QTAQ = QTQT +QTβqξTk +QTF (5.5.10)

QTAQ = (QTQT +QTβqξTk +QTF)T (5.5.11)

= T TQTQ+ βξkq
TQ+ F TQ (5.5.12)

The third line (5.5.12) is obtained by the fact that QTAQ is symmetric. Takes the

difference between the second line (5.5.11) and the third line(5.5.12) from above, we

have:

0 = (QTQT − T TQTQ) + β(QT qξTk − ξkqTQ) + (QTF − F TQ) (5.5.13)

Here, we make the approximation that ⟨qi, qj⟩ = 0 when |i−j| ≤ 2 throughout the rest

61

of the derivation, in theory, it should be O(ϵ), but we ignore error of orthogonalizing

the vector qj+1 against the vector qj, qj−1 because it’s small enough and doesn’t change

the final result.

As a result we obtained the factorization QTQ = I + CT + C where the matrix C

is lower triangular with diagonal and sub-diagonals being all zeros, representing the

Lanczos vectors losing orthogonality. Which means that CT +C is a matrix with zeros

on the tridiagonal parts and all other entries are the floating point errors from lost of

orthogonality. We proceed to simplify the first term from (5.5.14):

QTQT − T TQTQ = (I + CT + C)T − T T (I + CT + C) (5.5.14)

= T + CTT + CT − T T − T TCT − T TC (5.5.15)

= (CT − TC) + (CTT − TCT) (5.5.16)

CT is strictly lower triangular, TC is strictly lower triangular as well. This is true be-

cause a tridiagonal matrix only encodes interactions between adjacent rows/columns,

and C has zeros on it’s tridiagonal parts.

Consider adding back the subscript for ξkq
TQ, we have: ξkq

T
k+1Qk, observe that

ξkq
T
k+1 is a matrix whose last row is qTk+1. And because of the way that qk+1 is orthog-

onalized, the last 2 elements of the last row of ξkqk+1Qk is zero, which is strictly lower

triangular, therefore:

0 = (QTQT − T TQTQ) + β(QT qξTk − ξkqTQ) + (QTF − F TQ) (5.5.17)

0 = − (CT − TC)
︸ ︷︷ ︸

strict tril

+(CTT − TCT)
︸ ︷︷ ︸

strict triu

+β(QT qξTk
︸ ︷︷ ︸
strict triu

− ξkqTQ
︸ ︷︷ ︸

strict tril

)− (QTF − F TQ)

(5.5.18)

=⇒ 0 = (CT − TC)− βξkqTQ+ tril(QTF − F TQ)
︸ ︷︷ ︸

=:L

(5.5.19)

From the second line (5.5.19) to the third line (5.5.20), we take triu (the upper trian-

gular part of the matrix) on both side of the equation. Now consider multiplying by

62

vT (•)v for each terms in the above expression and we have:

vT (CT − TC)v = vTCTv − vTTCv (5.5.20)

= vTCθv − θvTCv (5.5.21)

= 0 (5.5.22)

Therefore we are left with the equality:

vTβξkq
TQv = vTLv (5.5.23)

(β(v)k)(q
TQv) = vTLv (5.5.24)

β(v)kq
Ty = vTLv (5.5.25)

Adding back the subscripts we have: βk(v
(k)
i)kq

T
k+1y

(k)
i = vTLv, notice that |vTLv| =

O(∥L∥) = O(∥QTF −F TQ∥) = O(ϵ∥A∥), which obtains the formula for this theorem.

Remark 5.5.1 (Mitigating the Lost of Orthogonality). For conjugate gradient, there is

little needs for asserting orthogonality and A-Orthogonality between the vectors rk and

pk unless ones need to emulate the behaviors of the algorithm under exact arithmetic.

The Lanczos algorithm is sometimes used for symmetric eigenvalues problem, and in

that case, making sure Qk is orthogonal will eliminate ghost eigenvalues. Fortunately,

there are ways where one can avoid the computational expense of full re-organization

to eliminate ghost eigenvalues.

The implementations of such algorithm appears first back in 1979 by B. N. Parlett

and D. S. Scott[11]. Later however, more sophisticated algorithms arised, and the

state of the art Lanczos algorithm implementation can be found in a 1992 paper by

Grimes, Roger G. and Lewis, John G. and Simon, Horst D.[7].

63

Appendices

A Useful Lemmas

A.1 Relative Energy Norm and Relative 2-Norm Conversions

Lemma A.1.1 (Relative Energy Norm and Relative 2-Norm Conversions). Let A be

a Symmetric Positive Definite Matrix, then:

∥Ax∥
∥Ay∥ ≤ κ(A)

∥x∥A
∥y∥A

Proof. From the definition of included 2-norm of matrices, assuming that λ1 is the

minimum eigenvalue of the matrix A, and λn the maximum, and the fact that matrix

A has factorization A1/2A1/2:

λ1∥x∥ ≤ ∥Ax∥ ≤ λ2∥x∥ (A.1.1)

√

λn∥x∥ ≤ ∥A1/2x∥ ≤
√

λn∥x∥ (A.1.2)

=⇒
√

λ1 ≤
∥Ax∥
∥A1/2x∥ ≤

√

λn (A.1.3)

Consider another vector y:

√

λ1 ≤
∥Ay∥
∥A1/2y∥ ≤

√

λn (A.1.4)

64

Combining the two we have:

√

λ1
∥Ax∥
∥A1/2x∥ ≤

√

λn
√

λ1 (A.1.5)

√

λ1
√

λn ≥
√

λn
∥Ay∥
∥A1/2y∥ (A.1.6)

=⇒
√

λ1
∥Ax∥
∥A1/2x∥ ≤

√

λn
∥Ay∥
∥A1/2y∥ (A.1.7)

∥Ax∥
∥A1/2x∥ ≤

√

κ(A)
∥Ay∥
∥A1/2y∥ (A.1.8)

∥Ax∥
∥Ay∥ ≤

√

κ(A)
∥A1/2x∥
∥A1/2y∥ (A.1.9)

∥Ax∥
∥Ay∥ ≤

√

κ(A)
∥x∥A
∥y∥A

(A.1.10)

B Theorems, Propositions, Proofs

B.1 Krylov Subspace Grade Invariant Theorem

Proposition B.1 (Krylov Subspace Grade Invariant Theorem). Once the subspace

becomes linearly dependent, the subspace becomes invariant.

Proof.

Kk =
[

b AB · · · Ak−1b

]

(B.1.1)

Kk Lin Dep =⇒ Ak−1b = Kk−1ck (B.1.2)

=⇒ AKk = Kk

[

e2 · · · ek ck

]

︸ ︷︷ ︸

:=Ck

(B.1.3)

=⇒ A2Kk = AKkCk = KkC
2
k (B.1.4)

A2Kk will span the same space as the range of the matrix Kk.

65

B.2 Cauchy Interlace Theorem for Tridiagonal Symmetric Ma-

trices

Theorem 6 (Cauchy Interlace Theorem for Tridiagonal Symmetric Matrices). Let Tk

be a k × k symmetric tridiagonal matrix, then its top left upper submatrix: Tk−1 =

(Tk):k−1,:k−1 has eigenvalues interlaced between the eigenvalues of Tk. Denotes all k

eigenvalues of Tk as θ
(k)
i , and all k − 1 eigenvalues of Tk−1 as θ

(k−1)
i . Order them so

that: θ
(k−1)
1 ≤ · · · ,≤ θ

(k−1)
i , similarly: θ

(k)
1 ≤ · · · ≤ θ

(k)
i , then:

θ
(k)
k ≥ θ

(k−1)
k−1 (B.2.1)

θ
(k)
1 ≤ θ

(k−1)
1 (B.2.2)

θ
(k−1)
i−1 ≤ θ

(k)
i ≤ θ

(k−1)
i (B.2.3)

Theorem taken from first chapter of Greenbuam’s book[6] and it’s adapted for sym-

metric tridiagonal matrix.

B.3 Orthogonal Polynomials and Lanczos

Proposition B.2 (Orthogonal Polynomials and Lanczos). The Lanczos algorithm

generates orthogonal polynomial under a discrete weighted measure covered by the

eigenvalues of matrix A, the polynomial also represents the Lanczos vector qk in the

Krylov subspace.

Proof. Let V H
k AVk = Tk be the tridiagonalization from Lanczos algorithm and we

assume exact arithmetic, using the fact that each Lanczos vector vk is an element

from the Krylov subspace, we can represent it as a matrix polynomial multiplied by

v1:

∃qm ∈ Pm : vm+1 = qm(A)v1 ∈ K(A|v1) ∀ m ≤ k − 1 (B.3.1)

Since the exact arithmetic generates orthogonal Lanczos vectors, let’s consider vi, vj

being represented by polynomial ϕ, φ, and we let UAUH = A be the eigendecomposi-

66

tion of matrix A then we have:

⟨vi, vj⟩ = 0 (B.3.2)

⟨ϕ(A)v1, φ(A)v1⟩ = 0 (B.3.3)

⟨Uϕ(Λ)UHv1, Uφ(Λ)U
Hv1⟩ = 0 (B.3.4)

Let: f1 = UHv1 Then: (B.3.5)

⟨Uϕ(Λ)f1, Uφ(Λ)f1⟩ = 0 (B.3.6)

⟨ϕ(Λ)f1, φ(Λ)f1⟩ = 0 (B.3.7)

n∑

i=1

(f1)
2
iϕ(λi)φ(λi) = 0 (B.3.8)

If we define an inner product between 2 functions ⟨ϕ, ψ⟩ :=∑n
i=1(f1)

2
iϕ(λi)ψ(λi), then

the polynomial which represents the Lanczos vectors in the Krylov Subspace will be

orthogonal under this inner product.

B.4 Recursion of the Symmetric Tridiagonal Matrix Determi-

nant

Proposition B.3 (Recursion of the Symmetric Tridiagonal Matrix Determinant). Let

Tk be a symmetric tridiagonal matrix in R
k×k with αi on its diagonal and βi on its

subdiagonal. Recursively, we define Tk−i = (Tk)1:k−i,1:k−1. Using | · | to denote the

determinant of a matrix, we have the recurrence relation:

|Tk| = αk|Tk−1| − β2
k−1|Tk−2|

Proof. Using the notation of e
(m)
k to denote the kth standard basis vector in R

m, con-

sider the Block Matrix:

Tk =

Tk−2 βk−2e
(k−2)
k−1

βk−2e
(k−2)T
k−2 αk−1 βk−1e

(k−1)
k−1

βk−1e
(k−1)T
k−1 αk

(B.4.1)

67

Now, we use the Laplace Expansion on the last row of Tk.

|Tk| = (−1)k+(k−1)βk−1

∣
∣
∣
∣
∣
∣

Tk−2

βk−2e
(k−2)T
k−2 βk−1e

(k−1)
k−1

∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

=(−1)2k−2βk−1|Tk−2|

+(−1)2kαk

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Tk−2 βk−2e

(k−2)
k−1

βk−2e
(k−2)T
k−2 αk−1

︸ ︷︷ ︸

=Tk−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(B.4.2)

Substituting the last equation back to the first equation of the first term.

|Tk| = (−1)2k−2+2k−1β2
k−1|Tk−2|+ αk|Tk−1| (B.4.3)

= −β2
k−1|Tk−2|+ αk|Tk−1| (B.4.4)

B.5 Recurrence of the Characteristic Polynomial of a Symmet-

ric Tridiagonal Matrix

Theorem 7 (Recurrence of the Characteristic Polynomial of a Symmetric Tridiagonal

Matrix). The characteristic polynomial of a symmetric tridiagonal matrix satisfies the

recurrences:

pk(x) = −β2
k−1pk−2(x) + (αk − x)pk−1(x)

p0(x) = 1

p−1(x) = 0

Where, pk(x) = |Tk − xI|, and pk−1(x) := |(Tk)1:k−1,1:k−1|, and pk−2 = |(Tk)1:k−2,1:k−2|.

Proof. Using Proposition B.3, but replacing αk to be αk − x due to the shifting intro-

duced by Tk − xI, then:

|Tk − Ix| = (αk − x)|Tk−1 − xI| − β2
k−1|Tk−2 − Ix| (B.5.1)

=⇒ pk(x) = −β2
k−1pk−2(x) + (αk − x)pk−1(x) (B.5.2)

68

The recurrence is direct from the recurrences of the determinant of symmetric tridiag-

onal matrix, which is a polynomial with degree zero is just 1, therefore the base case

matches up as well.

B.6 Tridiagonal Characteristic Polynomials is Scaled Lanczos

Orthgonal Polynomials

Proposition B.4 (Tridiagonal Characteristic Polynomials is Scaled Lanczos Orthgo-

nal Polynomials). The characteristic polynomial of Tk(with its recurrence justified in

Theorem 7) is a scalar multiple of the same polynomial that represents the Lanczos

vector qk+1 under the Krylov Subspace (from proposition B.2). Let pj−1 = |Tj−1| be

a j − 1 degree monic polynomial, and let ψj(x) represents Lanczos vector qj under

Krylov Subspace which is a j − 1 degree polynomial, then:

ψj(x) =

(
j−1
∏

i=1

βi

)−1

(−1)j−1pj−1(x) ∀ 1 ≤ j ≤ k (B.6.1)

Proof. To justify, we use the recurrence of the characteristic polynomial of the tridiag-

onal matrix together with the recurrence representing the qk Lanczos vector. Induc-

tively we assume the above (B.6.1) is true up to j. We make use of another recurrence

relations of ψj, which is easy to prove using the recurrence relations of Lanczos vectors:

βjψj+1 = (x− αj)ψj − βj−1ψj−1 ∀j ≥ 2

ψ1 = 1

ψ0 = 0

(B.6.2)

pj(x) = (αj − x)pj−1(x)− β2
j−1pj−1(x) ∀j ≥ 1

p0(x) = 1

p−1(x) = 0

(B.6.3)

69

The base case matches up, consider:

βjψj+1 = (x− αj)ψj + βj−1ψj−1 (B.6.4)

= (x− αj)

(
j−1
∏

i=1

βi

)−1

(−1)j+1pj−1 + βj−1

(
j−2
∏

i=1

βi

)−1

(−1)jpj−2

(B.6.5)

=

(
j−2
∏

i=1

βi

)−1
(
(x− αj)β

−1
j−1(−1)j+1pj+1 + βj−1(−1)jpj−2

)
(B.6.6)

=

(
j−2
∏

i=1

βi

)−1

(−1)j
(
(αj − x)β−1

j−1pj+1 + βj−1pj−2

)
(B.6.7)

=

(
j−2
∏

i=1

βi

)−1

(−1)jβ−1
j−1

(
(αj − x)pj+1 + β2

j−1pj−2

)

︸ ︷︷ ︸

=pj(x)

(B.6.8)

=

(
j−1
∏

i=1

βi

)−1

(−1)j+2pj(x) (B.6.9)

=⇒ βjψj+1 =

(
j−1
∏

i=1

βi

)−1

(−1)j+2pj(x) (B.6.10)

Moves βj to the RHS and we proved the statement for j + 1 remains true.

B.7 Irreducible Symmetric Tridiagonal Matrix

Proposition B.5. The tridiagonal matrix Tk generated by the Lanczos algorithm

cannot have repeated eigenvalues. It’s what referred to as an irreducible symmetric

tridiagonal matrix in some literatures, such tridiagonal matrix must have non-zero

elements on its sub-diagonals.

Proof. Let Tk be symmetric tridiaognal k × k matrix, its all sub/super diagonals are

non-zeros. Consider the submatrix (Tk−λI)2:k,1:k−1 with the first row and last column

removed. Regardless of λ, (Tk − λI)2:k,1:k−1 whose diagonals are the sub diagonals of

Tk, which is all non-zero. Hence det((Tk − λI)2:k,1:k−1) ̸= 0 ∀λ.

The determinant of (Tk−λI)2:k,1:k−1 is always nonzero implies that the full matrix

Tk−λI has a rank of at least k−1 for all λ; which implies that all roots of det(Tk−λI)

has algebraic multiplicity of strictly 1.

70

Since the matrix is symmetric, it must be diagonalizable. For contradiction as-

suming that it has repeated eigenvalues and still diagonalizable, it must have repeated

roots, which is a contradiction. Therefore all its eigenvalues are unique.

B.8 From CG to Lanczos: The Proof

We will break the proof into several parts. Firstly we address the base case, and then

we address the inductive case to establish the parameters between the tridiagonal

matrix and ak, bk, finally we resolve the sign problem between the Lanczos vectors and

the residual vectors.

B.8.1 The Base Case

Right from the start of the CG iteration we have:

r0 = p0 (B.8.1)

r1 = r0 − a0Ar0 (B.8.2)

Ar0 = a−1
0 (r0 − r1) (B.8.3)

Ar0 =
∥r0∥2A
∥r0∥2

(r0 − r1) (B.8.4)

Consider substituting r0 = ∥r0∥q1, r1 = −∥r1∥q2, then:

A∥r0∥q1 =
∥r0∥2A
∥r0∥2

(∥r0∥q1 + ∥r1∥q2) (B.8.5)

=
∥r0∥2A
∥r0∥2

∥r0∥q1 +
∥r1∥
∥r0∥

q2 (B.8.6)

And from this relation, using the Lanczos recurrence theorem would imply that α1 =

a−1
0 ; β1 =

√
b0

α0
. So far so good, we have shown that there is an equivalence between

the Lanczos and the CG for the first iterations of the CG algorithm.

71

B.8.2 The Inductive Case

Lemma B.8.1. Inductively we wish to show the relation that:

αj+1 =
1
aj

+
bj−1

aj−1
∀1 ≤ j ≤ n− 1

βj =

√
bj−1

aj−1
∀2 ≤ j ≤ n− 2

(B.8.7)

Proof. We start by considering:

rj = rj−1 − aj−1Apj−1 (B.8.8)

= rj−1 − aj−1A(rj−1 + bj−2pj−1) (B.8.9)

= rj−1 − aj−1Arj−1 − aj−1bj−2Apj−1 (B.8.10)

We make use of the recurrence asserted by the CG algorithm, giving us:

rj−1 = rj−1 − aj−2Apj−1 (B.8.11)

rj−1 − rj−1 = aj−2Apj−1 (B.8.12)

Apj−1 = a−1
j−2 (rj−2 − rj−1) (B.8.13)

Here, we can substitute the results for the term Apj−1, and then we can express the

recurrence of residual purely in terms of residual. Consider:

rj = rj−1 − aj−1Arj−1 − aj−1bj−2Apj−2 (B.8.14)

= rj−1 − aj−1Arj−1 −
aj−1bj−2

aj−2

(rj−2 − rj−1) (B.8.15)

=

(

1 +
aj−1bj−2

aj−2

rj−1

)

− aj−1Arj−1 −
aj−1bj−2

aj−2

rj−2 (B.8.16)

aj−1Arj−1 =

(

1 +
aj−1bj−2

aj−2

rj−1

)

− aj−1bj−2

aj−2

rj−2 (B.8.17)

Arj−1 =

(
1

aj−1

+
bj−2

aj−2

)

rj−1 +
rj
aj−1

− bj−2

aj−2

rj−2 (B.8.18)

Finally, we increment the index j by one for convenience, and therefore we establish

72

the following relations between the residuals of the conjugate gradient algorithm:

Arj =

(
1

aj
+
bj−1

aj−1

)

rj +
rj+1

aj
− bj−1

aj−1

rj−1 (B.8.19)

Reader, please observe that this is somewhat similar to the recurrence relations between

the Lanczos vectors, however it’s failing to match the sign, at the same time, it’s not

quite matching the form of the recurrence of βk from the Lanczos algorithm. To match

it, we need the coefficients of rj−1 and rj+1 to be in the same form, parameterized by

the same iterations parameter: j. To do that, consider the doing this:

qj+1 :=
rj
∥rj∥

(B.8.20)

qj := −
rj−1

∥rj−1∥
Note: This is Negative (B.8.21)

qj+2 :=
rj+1

∥rj+1∥
(B.8.22)

=⇒ A∥rj∥qj+1 =

(
1

aj
+
bj−1

aj−1

)

∥rj∥qj+1 +
∥rj+1∥qj+2

aj
+
bj−1∥rj−1∥

aj−1

qj (B.8.23)

Aqj+1 =

(
1

aj
+
bj−1

aj−1

)

qj+1 +
∥rj+1∥
aj∥rj∥

qj+2 +
bj−1∥rj−1∥
aj−1∥rj∥

qj (B.8.24)

Recall that parameters from conjugate gradient,
√
bj = ∥rj+1∥/∥rj∥, and aj =

∥rj∥2
∥pj∥2A

,

and we can use the substitution to match the coefficients for qj+2 and qj, giving us:

∥rj+1∥
aj∥rj∥

=
1

aj

√

bj (B.8.25)

bj−1∥rj−1∥
aj−1∥rj∥

=
bj−1

aj−1

1
√
bj−1

=

√
bj−1

aj−1

(B.8.26)

=⇒

αj+1 =
1
aj

+
bj−1

aj−1
∀1 ≤ j ≤ n− 1

βj =

√
bj−1

aj−1
∀2 ≤ j ≤ n− 2

(B.8.27)

Take notes that the form is now matched, but the expression for αj+1 has an extra

bj−1/aj−1, to resolve that, we take the audacity to make b0 so that it’s consistent with

the base case.

73

B.8.3 Fixing the Sign

We need to take a more careful look into the sign between qj the Lanczos Vector and

its equivalence residual: rj−1 in CG. Here, I want to point out the fact that, there are

potentially two substitutions possible for the above derivation for the inductive case

and regardless of which one we use, it would still preserve the correctness for the proof.

By which I mean the following substitutions would have both made it work:

qj+1 := ± rj
∥rj∥

qj := ∓ rj−1

∥rj−1∥

qj+2 := ± rj+1

∥rj+1∥

(B.8.28)

Under the context, the operations ±,∓ are correlated, choose a sign for one, the other

must be of opposite sign. In this case both substitutions work the same because

multiplying the equation by −1 would give the same equality, and we can always

multiply by another negative sign to get it back. The key here is that, the sign going

from qj to the next qj−1 will have to alternate. To find out precisely which one it is,

we consider the base case for the Lanczos Vectors and Residuals:

q1 = r̂0 (B.8.29)

q2 = −r̂1 (B.8.30)

... (B.8.31)

qj = (−1)j+1r̂j+1 (B.8.32)

B.9 Derive CG using Lanczos: Proof

We made use of the fact that the matrix Uk is unit upper bidiagonal. We want to find

the recurrences of the parameters uk, lk. Inductively assume Tk = LkUk and using the

74

block structure of the matrices:

Tk = LkUk (B.9.1)

Tk+1 =

Tk βkξk

βkξ
T
k αk+1

 =

Lk 0

lkξ
T
k 1

Uk ηkξk

0 uk+1

 (B.9.2)

=

LkUk ηkLkξk

lkξ
T
k Uk ηklkξ

T
k ξk + uk+1αk

 (B.9.3)

=

Tk ηk(Lk):,k

lk(Uk)k,: ηklk + uk+1

 (B.9.4)

=

Tk ηkξk

lkukξ
T
k ηklk + uk+1

 (B.9.5)

Assume matrix U at the top to be ηk, observe that βk is indeed the same as the

ηk for the upper diagonal of matrix Uk. From above, ηk = βk, and lk = βk/uk,

uk+1 = αk+1 − βklk, and hence, to sum up the recurrence relation we have:

uk+1 = αk+1 − β2
k/uk

lk = βk/uk

(B.9.6)

The base case is u1 = α1. The recurrence of the parameter uk is useful for figuring out

the recurrence for pk, the recurrence for constructing xk, we need to figure find out

the recurrence relations of (L−1
k)k,1 by consider:

L−1
k Lk = I (B.9.7)

L−1
k 0

sTk dk+1

Lk 0

lkξ
T
k 1

 = I (B.9.8)

I 0

sTkLk + dk+1lkξ
T
k dk+1

 = I (B.9.9)

75

Their product equals the identity matrix therefore dk+1 = 1, and it has to be that

sTkLk + dk+1lkξ
T
k . For the lower unit bi-diagonal matrix Lk, its inverse is lower tridiag-

onal, and the left k × k principle submatrix of L−1
k+1 is L−1

k . We can figure out sTk by

considering:

sTLk + dk+1lkξ
T
k = 0 (B.9.10)

LT
k sk + dk+1lkξk = 0 (B.9.11)

sk + L−Tdk+1lkξk = 0 (B.9.12)

(sk)1 + dk+1lk((L
−1
k)ξk)1 = 0 (B.9.13)

(sk)1 + dk+1lk(L
−1
k)k,1 = 0 (B.9.14)

=⇒ (sk)1 = −lk(L−1
k)k,1 (B.9.15)

(sk)1 = (L−1
k+1)k+1,1 by definition (B.9.16)

=⇒ (L−1
k+1)k+1,1 = −lk(L−1

k)k,1 (B.9.17)

The base case is L1 = 1. The short recurrence of parameters for decomposing the

tridiagonal matrix Tk allows for the Lanczos iterations to be mathematically equivalent

to the CG.

76

C Algorithms

Definition 7 (Lanczos Iterations Variants).

Given arbitrary: q1 s.t: ∥q1∥ = 1

α1 := ⟨q1, Aq1⟩

β0 := 0

Memorize : Aq1

For j = 1, 2, · · ·

q̃j+1 := Aqj − βj−1qj−1

q̃j+1 ← q̃j+1 − αjqj

βj = ∥q̃j+1∥

qj+1 := q̃j+1/βj

αj+1 := ⟨qj+1, Aqj+1⟩

Memorize: Aqj+1

(C.0.1)

77

References

[1] M.G. Cox et al. Reliable Numerical Computation. Oxford science publications.

Clarendon Press, 1990. isbn: 9780198535645. url: https://books.google.com/

books?id=CBnvAAAAMAAJ.

[2] James W. Demmel. Applied Numerical Linear Algebra. SIAM, Jan. 1997. doi:

10.1137/1.9781611971446.

[3] A. Greenbaum. “Behavior of slightly perturbed Lanczos and conjugate-gradient

recurrences”. In: Linear Algebra and its Applications 113 (1989), pp. 7–63. issn:

0024-3795. doi: https://doi.org/10.1016/0024-3795(89)90285-1. url: https:

//www.sciencedirect.com/science/article/pii/0024379589902851.

[4] A. Greenbaum, V. Druskin, and L. A. Knizhnerman. “On solving indefinite sym-

metric linear systems by means of the Lanczos method”. In: Zh. Vychisl. Mat.

Mat. Fiz. 39 (1999), pp. 371–377.

[5] A. Greenbaum and Z. Strakos. “Predicting the Behavior of Finite Precision Lanc-

zos and Conjugate Gradient Computations”. In: SIAM Journal on Matrix Anal-

ysis and Applications 13.1 (1992), pp. 121–137. doi: 10.1137/0613011. eprint:

https://doi.org/10.1137/0613011. url: https://doi.org/10.1137/0613011.

[6] Anne Greenbaum. Iterative Methods for Solving Linear Systems. Society for In-

dustrial and Applied Mathematics, 1997.

[7] Roger G. Grimes, John G. Lewis, and Horst D. Simon. “A Shifted Block Lanczos

Algorithm for Solving Sparse Symmetric Generalized Eigenproblems”. In: SIAM

Journal on Matrix Analysis and Applications 15.1 (1994), pp. 228–272. doi: 10.

1137/S0895479888151111. eprint: https://doi.org/10.1137/S0895479888151111.

url: https://doi.org/10.1137/S0895479888151111.

[8] Magnus R. Hestenes and Eduard Stiefel. “Methods of Conjugate Gradient for

Solving Linear Systems”. In: Journal of Research of the National Bureau of Stan-

dards 49.6 (1952), pp. 409–436.

78

https://books.google.com/books?id=CBnvAAAAMAAJ
https://books.google.com/books?id=CBnvAAAAMAAJ
https://doi.org/10.1137/1.9781611971446
https://doi.org/https://doi.org/10.1016/0024-3795(89)90285-1
https://www.sciencedirect.com/science/article/pii/0024379589902851
https://www.sciencedirect.com/science/article/pii/0024379589902851
https://doi.org/10.1137/0613011
https://doi.org/10.1137/0613011
https://doi.org/10.1137/0613011
https://doi.org/10.1137/S0895479888151111
https://doi.org/10.1137/S0895479888151111
https://doi.org/10.1137/S0895479888151111
https://doi.org/10.1137/S0895479888151111

[9] C. C. Paige and M. A. Saunders. “Solutions of Sparse Indefinite System of Linear

Equations”. In: SIAM.J Numerical Analysis 12.4 (1975), pp. 617–629.

[10] C.C. Paige. “Accuracy and effectiveness of the Lanczos algorithm for the sym-

metric eigenproblem”. In: Linear Algebra and its Applications 34 (1980), pp. 235–

258. issn: 0024-3795. doi: https://doi.org/10.1016/0024-3795(80)90167-6. url:

https://www.sciencedirect.com/science/article/pii/0024379580901676.

[11] B. N. Parlett and D. S. Scott. “The Lanczos Algorithm with Selective Orthog-

onalization”. In: Mathematics of Computation 33.145 (1979), pp. 217–238. issn:

00255718, 10886842. url: http ://www. jstor .org/stable/2006037 (visited on

05/16/2022).

[12] Y. Saad. “On the Rates of Convergence of the Lanczos and the Block-Lanczos

Methods”. In: SIAM Journal on Numerical Analysis 17.5 (1980), pp. 687–706.

doi: 10.1137/0717059. eprint: https://doi.org/10.1137/0717059. url: https:

//doi.org/10.1137/0717059.

[13] Yousef Saad. Iterative Methods for Sparse Linear Systems. 2nd ed. Society for

Industrial and Applied Mathematics, 2003.

[14] Yousef Saad. “Krylov Subspace Methods for Solving Large Unsymmetric Linear

Systems”. In: Mathematics of Computations 37.155 (1981), pp. 105–126.

[15] Jonathan Richard Shewchuk. An Introduction to the Conjugate Gradient Method

Without the Agonizing Pain. Aug. 1994.

[16] Kaniel Shmuel. “estimates for Some Computational Techniques in Linear Alge-

bra”. In: Math. of Comp. 95 (1966), pp. 369–378.

[17] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. 3rd ed. Philadel-

phia: Society for Industrial and Applied Mathematics, 1997.

79

https://doi.org/https://doi.org/10.1016/0024-3795(80)90167-6
https://www.sciencedirect.com/science/article/pii/0024379580901676
http://www.jstor.org/stable/2006037
https://doi.org/10.1137/0717059
https://doi.org/10.1137/0717059
https://doi.org/10.1137/0717059
https://doi.org/10.1137/0717059

	Notations
	Introduction
	Foundations
	The Basics
	Krylov Subspace
	Projectors

	Subspace Projection Methods
	Deriving Conjugate Gradient from Conjugate Directions
	CG Objective and Framework
	Using the Projector
	Method of Conjugate Directions
	Properties of CDM
	Conjugate Gradient
	CG and Krylov Subspace

	Arnoldi Iterations and Lanczos
	The Arnoldi Iterations
	Arnoldi Produces Orthogonal Basis for Krylov Subspace
	The Lanczos Iterations

	Analysis of Conjugate Gradient and Lanczos Iterations
	Conjugate Gradient and Matrix Polynomial
	Termination Conditions of CG

	Convergence Rate of CG under Exact Arithmetic
	Uniformly Distributed Eigenvalues
	One Outlier Eigenvalue

	From Conjugate Gradient to Lanczos
	From Lanczos to Conjugate Gradient
	Matching the Residual and Conjugate Vectors
	Matching the ak, bk in CG

	Effects of Floating-Point Arithmetic
	Partial Orthogonalization and Full Orthogonalization
	Relative Errors of CG Under Floating-Point Arithmetic
	Experiments

	Paige's Convergence rate of CG under Floating Points
	Bounding the Relative Residuals
	Paige's Theorem and Floating-point Convergence of CG

	Ghost Eigenvalues and Losing Orthogonality
	Ghost Eigenvalues Experiments
	Lanczos Vectors Losing Orthogonality on converged Ritz vectors
	Greenbaum's Tiny Interval Experiments

	Another Paige's Theorem

	Appendices
	Useful Lemmas
	Relative Energy Norm and Relative 2-Norm Conversions

	Theorems, Propositions, Proofs
	Krylov Subspace Grade Invariant Theorem
	Cauchy Interlace Theorem for Tridiagonal Symmetric Matrices
	Orthogonal Polynomials and Lanczos
	Recursion of the Symmetric Tridiagonal Matrix Determinant
	Recurrence of the Characteristic Polynomial of a Symmetric Tridiagonal Matrix
	Tridiagonal Characteristic Polynomials is Scaled Lanczos Orthgonal Polynomials
	Irreducible Symmetric Tridiagonal Matrix
	From CG to Lanczos: The Proof
	The Base Case
	The Inductive Case
	Fixing the Sign

	Derive CG using Lanczos: Proof

	Algorithms

